
NAVAL POSTGRADUATE SCHOOL
Monterey, California

19971124 006
JL UxLÄxÄ

BTIC QUALITY INSPECTED 8

USING ARTIFICIAL NEURAL NETWORKS TO IDENTIFY

UNEXPLODED ORDNANCE

by

Jeffrey A. May

June 1997

Thesis Advisor: Nelson D. Ludlow

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for
reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
June 1997

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE
USING ARTIFICIAL NEURAL NETWORKS TO IDENTIFY UNEXPLODED
ORDNANCE

6. AUTHOR(S)
May, Jeffrey A.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
The clearing of unexploded ordnance (UXO) is a deadly and time consuming process. The U.S. Government is

currently spending millions of dollars to remove UXO's from bases that are closing around the world. Existing methods for

detecting UXO's only inform the clearing team that a piece of metal is present, rather than the type of metal, either UXO,

shrapnel, or garbage. A lot of time and money is spent digging up every piece of metal detected. This thesis presents the

use of artificial neural networks to determine the type of UXO that is detected. A multi-layered feed-forward neural

network using the back propagation training algorithm was developed using the language Lisp. The network was trained to

recognize five pieces of ammunition. Results from the research show that four out of five pieces of ammunition from the

test set were identified with an accuracy of .99 out of 1.0. The network also correctly identified that a tin can was not one

of the five pieces of ammunition.

14. SUBJECT TERMS
Unexploded Ordnance, Artificial Neural Networks

17. SECURITY
CLASSIFICATION OF REPORT
Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

15. NUMBER OF PAGES
137

16. PRICE CODE

20. LIMITATION OF
ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

11

Approved for public release; distribution is unlimited

USING ARTIFICIAL NEURAL NETWORKS TO
IDENTIFY UNEXPLODED ORDNANCE

Jeffrey A. May
Captain, United States Army

B.S., Creighton University, 1988

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1997

Author

Approved by:

Nelson D. Ludlow, Thesis Advisor

Robert B. McGhoe, Second Reader

Ted Lewis, Chairman
Department of Computer Science

iii

IV

ABSTRACT

The clearing of unexploded ordnance (UXO) is a deadly and time consuming

process. The U.S. Government is currently spending millions of dollars to remove

UXO's from bases that are closing around the world. Existing methods for detecting

UXO's only inform the clearing team that a piece of metal is present, rather than the type

of metal, either UXO, shrapnel, or garbage. A lot of time and money is spent digging up

every piece of metal detected. This thesis presents the use of artificial neural networks to

determine the type of UXO that is detected. A multi-layered feed-forward neural network

using the back propagation training algorithm was developed using the language Lisp.

The network was trained to recognize five pieces of ammunition. Results from the

research show that four out of five pieces of ammunition from the test set were identified

with an accuracy of .99 out of 1.0. The network also correctly identified that a tin can

was not one of the five pieces of ammunition.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1
A. GOALS 1
B. BACKGROUND AND MOTIVATION 1
C. RESEARCH QUESTIONS 2
D. ORGANIZATION 2

II. BACKGROUND 3
A. INTRODUCTION 3
B. UNEXPLODED ORDANANCE IDENTIFICATION 3

1. Traditional Methods 3
2. Existing Methods 4
3. Artificial Neural Network Approach 6

C. ARTIFICIAL NEURAL NETWORKS 6
1. The Biological Neuron 7
2. The Artificial Neuron 9
3. Artificial Neural Networks 10
4. Learning 12
5. Network Architecture 15

D. SUMMARY 18
III. ARTIFICIAL NEURAL NETWORK DESIGN 19

A. CHOOSING A NETWORK DESIGN 19
1. Design Factors 19

a. Speed of Execution 19
b. Generalization 20
c. Scalability 20
d. Learning Speed 20
e. Number of Layers 21
f. Connectivity 22

2. Choosing an Architecture 23
B. MULTI-LAYERED FEED-FORWARD NETWORK 23
C. BACK PROPAGATION ALGORITHM 27

IV. AMMUNITION NETWORK 35
A. INTRODUCTION 35
B. AMMUNITION TYPES 35
C. DATA PREPARATION 38

1. Magnetometer 38
2. Data Collection 39

D. LISP IMPLEMENTATION OF NETWORK 40
1. Neuron Class 41
2. Layer Class 42
3. Network Class 44
4. Back Propagation Algorithm 46
5. User Interface 50

V. RESULTS 53
A. AMMUNITION GRAPHS 53
B. TRAINING 56
C. TESTING 57

VI. CONCLUSIONS 61

Vll

A. THESIS QUESTIONS 61
B. LESSONS LEARNED 63
C. RECOMMENDATIONS FOR FUTURE RESEARCH 64

APPENDIX A: SOURCE CODE (NEURON CLASS) 65
APPENDIX B: SOURCE CODE (LAYER CLASS) 69
APPENDIX C: SOURCE CODE (NETWORK CLASS) 73
APPENDIX D: SOURCE CODE (BACK PROPAGATION) 77
APPENDIX E: SOURCE CODE (AMMO RECOGNITION) 85
APPENDIX F: INPUT DATA 95
APPENDDC G: SOURCE CODE (C++ NEURAL NETWORK) 111
LIST OF REFERENCES 123
INITIAL DISTRIBUTION LIST 125

Vlll

ACKNOWLEDGEMENTS

This research was possible due to the efforts of many people. Most notably is that

of my thesis advisor and second reader. Major Nelson Ludlow's mentorship was truly

instrumental in my understanding of artificial neural networks. My ability to develop the

neural network using object oriented programming in Lisp is a credit to Professor Robert

McGhee's teaching.

Sincere thanks go out to three fellow students. Steve Weldon and Ken Fritzsche

sacrificed many hours of their valuable time to help me gather data on the unexploded

ordnance training sets and test sets. Paul Arcangeli was instrumental in providing

information on current techniques of UXO removal and in choosing the training set.

Their selfless efforts to help me achieve many of my research goals are a tribute to the

spirit of academics. I would also like to thank the 87th EOD for loaning me the

ammunition which made up the training sets.

I would also like to thank the students and faculty members at the Naval

Postgraduate School. I have found the educational experience to be a positive one and

this is only possible with the outstanding faculty and peers with which this institution is

blessed.

Finally, I am grateful to my wife Angela and sons Matthew and Garrett for their

patience, understanding, and support throughout this research and my studies.

IX

I. INTRODUCTION

A. GOALS

The goal of this thesis is to determine if an artificial neural network is capable of

identifying unexploded ordnance. The intent is to develop an artificial neural network to

correctly identify a limited set of unexploded ordnance. A successful neural network will

aid in the clearing of United States military bases by identifying those detection's that are

unexploded ordnance and should be excavated by expert EOD personnel, from those that

are not unexploded ordnance and can be removed by less trained personnel.

B. BACKGROUND AND MOTIVATION

As the military continues to scale down, the job of turning the land over to the

civilian sector is a labor intensive process. One of the biggest problems is the clearing of

unexploded ordnance (UXO) from the bases. It is a time consuming and expensive job to

dig up every piece of metal that returns a signal on the detection device. The metal

detected could be an actual round or fragments from exploded rounds as well as junk that

may be in the area.

The Department of Defense has recently approved two organizational structures

to confront the challenge of UXO remediation and wide-area de-mining. The objective of

the first committee is to develop a fully coordinated requirements driven research and

development program for countermine, de-mining, site remediation, range clearance, and

explosive ordnance disposal. Within the first committee there is a specific group focused

on detection technology. The second committee will focus on current technologies and

ways to improve in the future. One of the phases will examine current UXO remediation,

active range UXO clearance and explosive ordnance disposal efforts. So as you can see

the UXO problem is real and getting a lot of attention in today's military.

At the Naval Postgraduate School a team has been put together to develop an

autonomous vehicle or robot, which will survey the area for UXO's. The autonomous

vehicle, called Shepherd, is well under way. Shepherd is a four wheel independent

steering, autonomous vehicle. The four wheel independent steering allows Shepherd a

high level of mobility. The vehicle needs the means to locate and classify various

unexploded ordnance via standard sensors, such as a magnetometer. This is the basis of

my thesis.

C. RESEARCH QUESTIONS

This thesis will examine the following research areas:

• Are artificial neural networks able to correctly identify, within a certain degree

of precision, various types of unexploded ordnance both surface laid and

buried?

• What type of neural network architecture is best for the job?

• What is the training set to be used in the training of the neural network?

• With what precision are the objects correctly identified?

D. ORGANIZATION

Chapter II provides a general overview of traditional and current techniques for

identifying unexploded ordnance and gives an introduction to the artificial neuron, types

of neural networks and training methods. Chapter III covers the process of choosing a

network architecture and an in depth discussion of the feed-forward and back-propagation

algorithm used for the neural network. Chapter IV presents my artificial neural network

design for the UXO project as well as what ammunition was used and how the data was

gathered. In Chapter V the results of testing the neural network are presented, and

Chapter VI summarizes the thesis.

II. BACKGROUND

A. INTRODUCTION

The old saying that "time is money" holds true for the clearing of unexploded

ordnance. The methods used to accomplish range remediation, both in the past and

recent, are time consuming. It takes time to dig up every piece of metal that returns a

signal. This time costs the government a lot of money. If we can identify objects that are

ordnance from objects that are not, such as tin can or shrapnel, we can remove objects

safely. To EOD personnel, every piece of unexploded ordnance on the ground is

potentially deadly and great caution is taken to avoid injury. Being able to determine

unexploded ordnance from junk can save lives as well as time and money.

In this thesis the term unexploded ordnance refers to projectiles, either tube

launched or rocket assisted, bombs dropped from aircraft, and thrown ammunition, such

as hand grenades. Excluded from this list are land mines. Land mines present a whole

different challenge to range clearing efforts. In this chapter the techniques used to clear

unexploded ordnance are addressed. Then, the fundamental of artificial neural networks

will be introduced in order to provide the reader with the background necessary to make

the research more understandable.

B. UNEXPLODED ORDANCE IDENTIFICATION

1. Traditional Methods

The traditional method of clearing unexploded ordnance consists of personnel

using some type of metal detector to detect the general location of ordnance and then

marking the spot with a flag. The next step is digging up the ordnance and removing it

from the site. As you can tell, a lot of unnecessary metal is dug up and a lot of time is

wasted. This method is both dangerous and expensive. However, for many years it was

the only method available. With the massive number of acres of land from closed bases

needing cleared and an ever decreasing defense budget, new methods of UXO removal

must be developed.

2. Existing Methods

The devices for detecting unexploded ordnance have improved over the years.

For the most part however, the methods for clearing UXO's have not. Many government

contractors are still using the traditional method explained above. The most common

technique used to deter the cost of sweeping an entire base is some form of sampling.

Areas to be cleared are assigned grid zone designators. The size of a grid may vary

depending on the terrain, but a 100 x 100 foot grid is a good starting place. This grid is

then broken down into sub-grids or lanes that are randomly chosen for sweeping with a

magnetometer. Any detection's are flagged for removal. The metal removed is classified

as either a UXO, shrapnel, or trash. A determination on whether to clear an area is made

based upon, among other things, the concentration of UXO classified objects in the sub-

grid or lane.

Some of the other factors taken into account are the history of the area, what will

the land be used for, and location of the land. The history of a grid must be investigated

before one can be chosen. The history looks at the type of rounds fired into the area,

where the rounds were fired from, and where they were to impact, as well as a margin of

error based on the capabilities of the round. The capabilities of the rounds also include

the penetrating depth of the round. This way the clearing team knows up to what depth to

clear. What the land will be used for also determines the clearing depth. Construction in

the area may only penetrate to a certain depth, therefore clearance beyond that depth is

wasting time and money. The location of the land also plays an important role. If the

land is in a residential area, the number of sub-grids or lanes sampled may be greater than

that of a remote area with thick brush that will not be used for anything in the near future.

Recent statistical computer models have aided in the grid zone technique by

allowing the clearing team to randomly sample the detection's within a sub-grid or lane.

The models compute concentration of UXO's based on a formula and the data from the

random samples. A computer aided tool know as the Ordnance and Explosives

Knowledge Base (OE-KB) is being developed by the U.S. Army Engineer Center in order

to build a knowledge base on the characteristics of detection's [Ref. 1]. Some of these

characteristics include the sensor used, the type of round, the depth, the angle, and the

type of soil. Detection readings are fed into the database in order to attempt to determine

the type and depth of the ammunition. OE-KB uses sophisticated mathematical

algorithms, computerized pattern-recognition, and data fusion (the combination and

comparison of data-sets from two or more different types of geophysical instruments) to

help differentiate between munitions and non-munitions and estimate depth of burial

[Ref. 1].

The most common type of metal detector used is the magnetometer. A

magnetometer was used to gather the input data for the neural network in this thesis. The

GA-72Cd Magnetic Locator, made by Schonstedt Instruments Company, detects the

magnetic field of iron and steel objects [Ref. 2]. The magnetometer has an audio and

digital output, and a polarity indicator to help pinpoint the target and even determine it's

orientation. Test have shown that magnetometers detect ferrous munitions and are

effective to depths of 2 or 3 meters [Ref. 1].

In a paper published by Matthew Gifford and John E. Foley for Sanford Cohen

and Associates Inc., a neural network is used to identify the weight and depth of the UXO

[Ref. 3]. A dig team recorded data obtained from a Geonics EM-61 pulsed induction

sensor. This information was then fed into a multi-layered feed-forward neural network

to determine the weight and depth of the object. The network used back-propagation to

train on 107 items and then was tested on 40. The outcome was a 77% detection rate

with a cost savings of 74% over the Amag and flag technique. This study seems to prove

that the use of a neural network to classify and reduce UXO remediation is a valid option.

The problem with this research is that any piece of metal that has a similar mass as an

UXO and is at the appropriate depth will be dug up.

3. Artificial Neural Network Approach

An artificial neural network is good for pattern recognition and classification

problems. With the use of a magnetometer, UXO's produce a signal that varies across a

grid. The grid can be fed into a neural network. This pattern of signals can be classified

by the neural network as a type of UXO that the network has been trained to recognize.

That is the goal of this thesis. Given a grid of inputs, say 60 X 60 cm, take these values

returned by the magnetometer and train a network to recognize certain patterns that relate

to several types of UXO's. If successful, the artificial neural network will be able to

identify UXO's that need to be removed versus returns from a magnetometer that could

just be scrap metal. This would save a lot of time and money. To understand how an

artificial neural network can accomplish this mission, the following section will give an

overview of how an artificial neural network works.

C. ARTIFICIAL NEURAL NETWORKS

What are artificial neural networks and why are they used? Artificial neural

networks are an attempt to make computers use the same reasoning as humans.

Computers use the Von Neumann architecture that is very efficient for number crunching.

Computers greatly out perform humans in this area and hence, their popularity. When it

comes to perceptual problems, humans are way out in front of computers. Table 2.1

points out some of the key differences between computers and the human brain. Why use

an artificial neural network? Neural networks are a good solution to a problem that is not

well defined. If the input data may vary for the same problem, then a neural network is

much more forgiving than a traditional algorithm. A neural network also promotes the

ability to use parallel processing. From a purely scientific stand point, one reason to use

a neural network is an attempt to model the human decision making process. The key to

human success lies in the biological neuron.

» d2Mttk~^i:~zt

Processor Complex Simple

High speed Low speed

One or a few A large number

Memory Separate from a Integrated into processor

processor Distributed

Localized Content addressable

Non-content addressable

Computing Centralized Distributed

Sequential Parallel

Stored programs Self-learning

Reliability Very vulnerable Robust

Expertise Numerical & symbolic

manipulation

Perceptual problems

Operating Well defined Poorly defined

Environment Well constrained Unconstrained

Table 2.1: Von Neumann computer versus biological neural system [Ref. 4].

1. The Biological Neuron

A neuron is a cell that processes information in humans. Figure 2.1 shows a

picture of a neuron and all of its components. The neuron is made up of a cell body

(soma), branch like Figures called dendrites and an axon which also protrudes from the

soma. The dendrites are the receivers of signals from other neurons while the axon is the

transmitter of signals to other neurons. The synapses are between the dendrites of one

neuron and the axon of another neuron. The synapses release neurotransmitters that,

depending on their type, can excite or inhibit the signal. The synapses are the key to

learning in the neuron. They can be adjusted based on their experience.

In order to understand the magnitude and complexity of the neurons in a human,

the cerebral cortex is examined. The cerebral cortex is about 2 to 3 millimeters thick with

a surface area of about 2,200 cm2, about twice the size of a standard computer keyboard

[Ref 4]. The cerebral cortex contains about 10" neurons, which is approximately the

number of stars in the Milky Way [Ref. 4]. Each neuron is connected to approximately

103 other neurons and the human brain contains roughly 1014 to 1015 interconnections

[Ref. 4].

The neuron operates at a speed of a few milliseconds. From the time it takes a

human to recognize an object, it has been determined that the perceptual decisions cannot

take more than 100 or so serial steps [Ref. 4]. Therefore, the brain must run parallel

processes that are about 100 steps long for such a task. In the same research it was shown

that only a very small amount of information was transferred in this time. Therefore it is

believed that critical information is not transmitted directly, but captured and distributed

in the interconnections [Ref. 4]. As you will see, this is the basic idea behind the

artificial neural network.

Figure 2.1: A biological neuron.

2. The Artificial Neuron

The artificial neuron attempts to model the biological neuron using a computer.

Figure 2.2 shows the layout of an artificial neuron. There are three basic components:

• The synapse is modeled by a weight associated with that connection to the

neuron and an input signal from the previous neuron or source. Here, the

weight and the input signal are multiplied to provide an input value for that

connection. The key to a successful neural network lies in the value of the

weights associated with each neuron. Chapter IV will discuss how the back-

propagation algorithm assigns these weights.

• The dendrite provides the input from the synapse to the soma. This is the

connection leading into the neuron. Here the artificial neuron has an adder

which computes the summation of the weighted inputs from all the synapses.

• The soma is modeled by an activation function for limiting the amplitude of

the output signal from the neuron. The activation function is a nonlinear

function. Four typical types of activation functions are the threshold,

piecewise linear, sigmoid and Gaussian functions shown in Figure 2.3. The

threshold function is an on-off type of function. This means the neuron will

only fire at the vertical on the graph. The piecewise linear function displays a

little better firing distribution. Sigmoid functions, such as the logistics

function, are the most widely used activation functions. They exhibit a strictly

increasing function that provides the desired asymptotic properties [Ref. 4].

By inspection, it is easy to see that the Gaussian function is increasing the

intensity with the higher negative weights and decreasing intensity with the

higher positive weights. The output range of the neuron is a closed interval

[-1,1]-

Figure 2.2: McCuIloch-Pitts model of a neuron [Ref. 4].

threshold piecewise linear sigmoid Gaussian

Figure 2.3: Activation Functions.

A neuron can be described in mathematical terms by the following equation:

(P ^
yk = cp X wJkXj

V j=i)

Where cp is the activation function, wjk is the specific weights associated with that neuron

and Xj is the signal input for that neuron. The value yk is the value that is produced by

that particular neuron which should be between 0.0 and 1.0. This value is the passed on

to other neurons as the new input and the process starts all over again. This is the basic

idea of how a neural network is formed.

3. Artificial Neural Networks

The way in which one combines neurons to produce an answer to a problem is

called an artificial neural network. The number of input values determines the number of

input neurons. There are several ways you can connect the next layer, or hidden layer,

neurons to the input layer neurons. Several layers of neurons can be used. The number

10

of output neurons depends on the number of possible outcomes for a particular problem.

The trick becomes knowing how many neurons to have in the hidden layer and the

number of hidden layers to have in a network.

The way a neural network solves a problem can be traced to the idea of linear

separability. Figure 2.4 shows the graph of an AND function and the line that is drawn

by the neural network [Ref. 5]. The correct answer has been separated out from the

wrong answers by the network. Notice that everything above the line will exhibit

characteristics of the correct answer. The equation of a line is Ax + By + C = 0. This

equation can be translated into the following equation from the AND neural network:

xiWi + X2W2 + B = 0

where x, and x2 are the input signals 1 and 0, and Wj and w2 are the weights associated

with these neurons. B is a bias that is thrown in to help separate the problem.

When a problem is linearly inseparable, then multiple layers are needed to

separate out the answer with multiple lines. Figure 2.6 shows the Exclusive-OR problem.

Notice that two lines are needed to separate out the answer in this problem. The first

hidden layer separates out the two correct answers. In this case, the output layer

combines the correct outputs and separates true from false with a single line. By adding

more layers the correct responses become more defined. However, it is argued that any

problem can be solved with a three layer network [Ref. 6].

A three layer network is defined by the input layer, consisting of the input values,

the hidden layer, consisting of neurons that separate the problem, and an output layer,

consisting of neurons that produce the desired answers. The desired answer is defined by

the training set. Let's say your neural network is designed for character recognition. The

number of possible outputs is 26, one for each letter in the alphabet. Therefore, your

output layer will have 26 neurons, each providing a value for the character that it

represents. This value should be high for the neuron associated with the correct input and

low for the rest of the neurons. For example, if the character 'C is given, it should

11

produce a high output (close to 1.0) for output C, and a very low output (close to 0.0) for

the other 25 outputs.

Figure 2.4: Classification line for logical AND[Ref. 5].

Figure 2.5: The figure on the left shows how the hidden layer separates the inputs. The figure on the
right shows how the output layer makes the problem linear separable [Ref. 5].

4. Learning

There are three types of learning paradigms when it comes to neural networks:

• Supervised learning separates the training from the environment. The network

must be taught to recognize the inputs for which it has been designed to

produce an output. This is accomplished by developing a training set of

samples of the environment for which the network is to perform. The network

is then trained in an iterative process, via a training algorithm, until the

12

appropriate response is produced to the entire training set. The appropriate

response is defined by the designer as an acceptable level of error. The means

in which to reach the acceptable error is known as the steepest descent

problem. Chapter III will go into great detail on the steepest descent problem.

Once the designer is satisfied, the training algorithm is removed from the

network. Now the network is tested on the environment. The network is now

unsupervised and working on its own with an embedded knowledge from the

training algorithm.

• Unsupervised learning is the exact opposite of supervised learning. There is

no teacher. The network finds correlations between patterns in the input data

and groups those correlations into categories. By comparing new input data to

previous ones, the network can categorize the data and produce an answer.

• Reinforcement learning has no teacher to give direction to the answer. It must

probe the environment to gain knowledge of the direction to travel in order to

obtain the correct answer.

There are four learning rules that span the above learning paradigms:

• Error-correction rules basically perform as stated above in the supervised

learning paradigm example. The weights in the network are adjusted in

accordance with an output error. The desired output is subtracted from the

actual output and this value is called the error for that run through the neural

network. All of the weights are adjusted to decrease this error by a

predetermined value each time through the network. Mathematically speaking

ek = dk- ak, Awjk = ß*e*i, wjk = wjk + Awjk

given k = neuron, w = weight, i = input value, ß = predetermined step value,

e = error, d = the desired value, and a = the actual value.

• Boltzmann learning applies to Boltzmann machines in which the neurons

operate in a binary manner, +1 for the on state and -1 for the off state [Ref. 4].

The neurons are further divided into visible neurons, which interact with the

13

environment, and hidden neurons which do not. The machine itself operates

in two modes: clamped, in which the visible neurons are set in there current

states determined by the environment, and free, in which both the visible and

hidden neurons are allowed to operate freely. The objective of Boltzmann

learning is to adjust the connection weights so that the states of the visible

units satisfy a particular probability. Weight changes are denoted by

Aw = ß(pjk - pjk)

where ß is the learning rate, and pjk,pjk are the correlation's between the states

of units j and k when the network operates in the clamped and free mode,

respectively [Ref. 4].

Hebbian rule is base on the fact that if two neurons are activated

synchronously then the weight is strengthened. If the two neurons are

activated asynchronously then the weight is weakened.

Awjk = ß*oj* Ok, Wjk = wjk + Awjk

where wjk is the weight from neuron j to neuron k, o is the output of the

neuron, and ß is the learning rate. This learning rule is highly dependent on a

recurring structure which will be discussed later.

Competitive learning systems group the input data into categories. Based on

the input, the correct group is stimulated and only those units fire. This is

known as the winner-takes-all method. The output of the winner is set to 1

and all other nodes are set to 0. Only the weights of those that fire are

updated. The good weight values from the input vectors of the winner are

distributed equally over the entire set of input weights associated with the

winning neuron.

\ß(Xk - Wjk)
2_iwjk = l, Awjk = <Q

14

Where wjk is the weight, j is the neuron the weight is coming from, k is the

neuron, xk is the input value, and ß is the learning rate. This has the overall

effect of moving the weight vector of the winning neuron toward x [Ref. 7].

5. Network Architecture

There are many types of neural network architectures. Figure 2.6 provides a

layout of how they are broken down. The recurrent networks are ones in which learning

is based on associative memory. The loops that occur in the network act as a state that

the network enters based on the input. Recurrent networks are dynamics systems. Each

neuron is dependent on it's previous output due to the feedback nature of the network. In

this manner they are also able to store information. The feed-forward networks contain

no loops. They have no memory. This means that the value produced does not rely on

previous inputs. The learning is supervised because it is based on the training set. Feed-

forward networks are static in the sense that once they have been trained, they produce

one set of output values for one set of input values. I will briefly discuss the types of

networks presented in Figure 2.6 that have not already been discussed in the learning

section.

Neural Networks

Feed-forward networks Recurrent/feedback networks

' ' \ 4 ' ' ' '

Single-layer
Perceptron

Multi-layer
Perceptron

Radial Basis
Networks

Competitive
Networks

Kohonen's
SOM

Hopfield
Network

Art
Models

Figure: 2.6: A taxonomy of feed-forward and recurrent/feedback networks [Ref. 4].

This thesis concentrates on the feed-forward type of neural networks. The most

widely used type of feed-forward network is the multi-layered feed-forward neural

network. The performance of this network is exactly as the name implies. The input

15

signals are fed into the network and multiplied by the weights assigned to the signal. The

weighted sum of each neuron is then fed to an activation function which produces the

output value of the neuron. These values are then fed to the next layer and the process is

repeated until there are no more layers. The neuron in the output layer with the greatest

value represents the pattern that was fed into the network. The whole key to this network

are the values of the weights. The algorithm used to adjust the weights is the back-

propagation algorithm.

The radial basis functions (RBF) networks are a special form of the multi-layered

feed-forward network with two layers, a hidden layer and an output layer. The hidden

layer is a nonlinear mapping from the input values to the hidden layer. A nonlinear radial

basis function is used as an activation function in the hidden layer. A linear combination

of RBFs is used to convert the hidden layer to the linear output layer. The RBF has the

following property:

F(x) = Wi(pQ\x-x,\\)

where {<p(\\x - XJH) | i = 1, 2, ,N} is a set of N arbitrary (generally nonlinear) RBF

functions and || . || denotes a norm that is usually taken to be Euclidean [Ref. 7].

RBF networks are used for function approximation, pattern classification,

prediction and control problems.

The Kohonen's Self Organizing Map (SOM) artificial neural network models the

fact that in the biological neural network environment tends to strengthen connections

that are close in physical proximity. The SOM model uses a two dimensional output grid

of neurons that are connected to their neighbors. All of the inputs are connected to each

neuron in the 2-dimensional grid. Figure 2.7 shows the set-up of a Kohonen SOM. The

sum of each set of input weights from any input node total one. As the inputs are fed to

the network, the neuron with the maximum sum of the weight values wins. This neuron's

weight values are updated as are the weights of the neurons that are a neighbor of the

winning neuron. The weight values of the input nodes are then normalized again. The

16

weights will eventually spread out and the neighborhoods will become sensitive to certain

input patterns.

Kohonen's SOM has been successfully applied in the areas of speech recognition,

image processing, robotics, and process control [Ref. 4].

output nodes

»

inputs

Figure 2.7: Kohonen self organizing map [Ref. 8].

Adaptive resonance theory models (ART) are able to continually accept new

patterns until some threshold is met, namely the number of output nodes. ART models

use the competitive learning rule so they are fully connected, both forward and backward,

networks that start out with none of the output neurons producing any pattern. As inputs

are fed to the network, output nodes are assigned to the new input. The input is first

compared against the stored patterns and the closest match is selected for further

comparison against a vigilance. A vigilance is a predetermined value between 0 and 1.

The closer to one the closer the match must be, the closer to zero the weaker the match is

allowed to be. The two patterns are compared by computing the dot product of the

patterns and dividing by the number of ones in the input pattern. If the ratio is greater

than the vigilance then the pattern is considered similar and the stored pattern is updated.

If the ratio is not greater than the vigilance and there is a free output node, it is assigned

to the new pattern. If there is no free output node then nothing is changed.

One of the main problems with this model is that noisy input could create more

than one node that represents the same input. ART models are used for categorization

problems.

17

D. SUMMARY

The clearing of military bases is an inherently dangerous and costly mission. The

traditional method of digging up every piece of metal that returns a signal from the metal

detector needs to be replaced with a more efficient method. Artificial neural networks

possibly present a cost efficient method of dealing with UXO's. At the center of all

neural networks is the model of the biological neuron. There are many types of neural

network architectures that use various types of learning rules to solve a variety of

problems. Networks use supervised (use a teacher), unsupervised (learn on there own) or

reinforcement learning (a hybrid of the two). They are either associative (have memory)

or non-associative (no memory). Neural networks are used to solve problems such as

pattern classification, categorization, function approximation, prediction, and data

analysis. In range remediation there are three problems: detection, localization, and

classification. The problem of determining what type of ammunition is on the ground is a

classification problem. A multi-layered (three layer) feed-forward neural network with

supervised learning (back-propagation) for pattern classification was chosen for this

thesis. The next chapter will present the process by which the neural network design for

UXO detection was chosen as well as the details of the network design.

18

III. ARTIFICIAL NEURAL NETWORK DESIGN

A. CHOOSING A NETWORK DESIGN

Once the decision has been made to use a neural network to solve a problem, the

next step becomes choosing an architecture to fit the needs of the problem. There are

several types of neural networks for every type of problem. Table 3.1 shows a few of the

types of neural networks and what types of problems they solve. Paradigm, learning rule,

architecture, and learning algorithm were all discussed to some extent in Chapter II. The

goal of this thesis is to determine the type of ammunition presented to a neural network as

recorded from a magnetometer. This is a classification problem, so the focus will be on

what type of classification neural network will best suit the needs of the UXO project.

There are several factors to take into account.

1. Design Factors

a. Speed of Execution

As in all real time systems, speed is at the top of the priority list. Speed of

execution refers to the time it takes a neural network to determine what kind of object the

input data represents. This is not to be confused with the rate at which a neural network

learns. Learning rate is the time it takes a network to be trained to recognize a set of

inputs. Learning rate will be discussed later. The more connections there are the slower

the network will operate. All of the associative memory networks require connections to

previous nodes in order to store the information on a pattern. This will slow the

performance of the network. A strictly feed-forward network will limit the number of

connections needed to accomplish the mission. In order for this project to perform

correctly, the neural network more than likely will be implemented in hardware. A

hardware implementation can speed up the execution speed by as much as 1000 times.

19

b. Generalization

Generalization refers to the type of input. If the input is the same as the

input that the network was trained on, then generalization is not that important. But, if

the input is something the network has not seen before, then the ability of the network to

generalize will make or break the system. In order to ensure the former case, the network

would have to be trained on an exhaustive list of possibilities. This is usually not

possible. The latter case may lead to the network failing when an unknown is introduced.

If your network is designed to generalize, it may try to give an answer for something it

really should not recognize. As long as it is a low percent of probability there should not

be a problem.

c. Scalability

Some systems are able to add new patterns without any rewriting of code.

But, there is a finite number of patterns that can be added to any network. The more

patterns that are programmed in to a network, the more connections there are and the

slower the network will run. A designer must determine if the set of possibilities are

relatively small or infinite in size.

d. Learning Speed

Learning speed are a major area of concern in any neural network

architecture. It can take several iterations for a training algorithm to converge on the

optimal solution. Sometimes it may even take several restarts to get to the optimal

solution without becoming stuck in a local minimum. A network that takes a longer time

to train will more than likely come up with a better optimal solution than a fast training

algorithm. As long as training time does not interfere with the execution time, learning

speed should be a matter of quality not quantity. Chapter II covered some of the types of

algorithms that determine the speed with which a network will learn. Different

architectures use different training algorithms.

20

e. Number of Layers

This is a topic of great interest for any designer of a network. What is the

magic number of layers and neurons per layer? Trial and error seems to be the best

solution. There are however, a few guidelines for determining these parameters. The

number of layers in a network seems to vary according to the problem at hand. Figure

3.1 shows the ability of different numbers of layers to solve different levels of complex

problems. When dealing with the number of neurons in a layer, one method is having

more than three times as many nodes in the second layer as in the first layer [Ref. 8].

Figure 3.1 gives the definition of a three layer network as one with three

layers of neurons. Some books present the two layer network from Figure 3.1 as a three

layer network because the input values are counted as a layer. While the input layer does

not perform any computation, it is still considered a layer. This thesis refers to the two

layer network in Figure 3.1 as a three layer network. In general there is a clear advantage

to using a single hidden layer of non-linear neurons between the input and output layers,

but having more than two hidden layers in a system with non-linearity does not increase

their computational power [Ref. 9]. It is said that a three layer network can solve any

problem [Ref. 10].

Structure

A
Single layer

Two layer

Three layer

Description of
decision regions

Half plane
bounded by
hyperplane

Arbitrary
(complexity
limited by
number of hidden
units)

Arbitrary
(complexity
limited by
number of hidden
units)

Figure 3.1: A geometric interpretation of the role of hidden units in a two-dimensional space [Ref. 4]

21

/ Connectivity

A fully connected network produces a lot of overhead and may cause the

system to slow down. Networks that are not fully connected are feature extraction

networks. Feature extraction may be necessary with a large input set. The number of

connections and time to produce an answer, may be so great with a fully connected

system that feature extraction may be necessary. Defining features and how they tie in

can be a complex problem. A fully connected model is easier to follow.

Supervised Error-correction Single or
multi-layer
perceptions

Boltzmann

Hebbian

Competitive

Recurrent

Multi-layer
feed-forward

Perception
learning algorithms
Back-propagation
Adaline & Madaline

Boltzmann learning
algorithm

Linear discriminant

Learning vector
quantization

Competitive

ART network ART Map

Pattern classification
Function approximation
Prediction, control

Pattern classification

Data analysis
Pattern classification

Within-class categorization
Data compression

Pattern Classification
Within-class categorization

Unsupervised Error-correction Multi-layer Sammon's project
feed-forward

Data analysis

Hebbian Feed-Forward Principal component Data analysis
or competitive analysis Data compression

Competitive Competitive Vector quantization Categorization
Data compression

Kohonen's
SOM

Kohonen's SOM Categorization
Data analysis

ART network ART1, ART2 Categorization

Hybrid Error-correction
and competitive

RBF network RBF learning
algorithm

Pattern classification
Functional approximation
Prediction, control

Table 3.1: A layout of different types of architectures and the task they perform [Ref. 4].

22

2. Choosing an Architecture

Of the classifiers, perceptron, multi-layer feed-forward, Hopfield, SOFM, ART,

Boltzmann, and Hebbian, the multi-layer feed-forward neural network provides the best

architecture for the UXO problem. The perceptron is limited in the number of decision

regions it is able to separate to one. Boltzmann and Hopfield rely on binary input and are

constantly training. Continuous data will be used for the UXO problem. SOFM, ART,

and Hebbian networks rely on associative memory which will slow the network down

when considering the number of nodes that are needed for this problem.

The multi-layered feed-forward network has a fast execution time because

training has already been completed and it is not an associative memory network. This

means the network only has to feed-forward while making a decision and not backward

as well. A fully connected multi-layered network will produce more overhead than a

feature extraction network, but still less than an associative memory network. This type

of network is able to generalize quite well. The multiple number of layers allows the

network to separate complex decision regions as shown in Figure 3.1. Once the network

is established, one must create a new network in order to expand the output set or

combine two networks. Both methods will require retraining. The back-propagation

algorithm is slow in convergence, but once the network is trained, the algorithm is

removed.

B. MULTI-LAYERED FEED-FORWARD NETWORK

The multi-layered feed-forward neural network has been chosen as the

architecture for this thesis. It can be shown that a three layer network consisting of an

input layer, one hidden layer, and an output layer, can represent any function provided

there are a sufficient number of neurons in the hidden layer [Ref. 10]. For this reason,

without any other information on how to start a neural network, the three layer network is

kind of the standard. Therefore, a three layer network has been chosen in order to cut

down on the total number of neurons and for it's simplicity.

23

The input layer of the network is folly connected to the hidden layer. This means

that for each neuron in the hidden layer, there is a weight that is associated with a

corresponding neuron in the input layer. The input layer in this network serves as only an

input node. The values from each input neuron are passed on to all of the neurons in the

hidden layer. Figure 3.2 illustrates how the values are passed to the hidden layer.

The hidden layer is where the first computations take place. Each neuron in the

hidden layer takes the weighted sum of all of the values from the input layer. Each

neuron then runs the weighted sum through a non-linear activation function in order to

get the output value for each neuron in the hidden layer. The activation function to be

used is the logistics function which will be discussed more in the next section. Now the

process starts all over again. This time the input is the output from the hidden layer.

Input Values Hidden Layer Neurons Output Layer Neuron

Figure 3.2: Multi-layered feed-forward neural network.

The output layer receives the output values of the hidden layer as its input values.

The number of nodes in the output layer corresponds to the number of different elements

in the training set. For example, if your net is set up to classify 5 different items, then

there are five neurons in the output layer. Referring to Figure 3.2, the same process starts

all over again. The weighted summation of the input values multiplied by the weights are

fed through the activation function. The highest value of the output layer neurons is the

answer for the particular input data fed to the network. Notice that each neuron in the

output layer has the same number of weights associated with it as the number of neurons

24

in the hidden layer. How these weights are derived is the topic of the next section.

Figure 3.3 shows how the input values are fed forward through a feed-forward network.

The following is an outline of the feed-forward process in a three layer neural

network:

• Calculate the weighted sum for the hidden layer. The weighted sum simply

takes the input values of all of the nodes connected to a neuron and multiplies

those values by there associated weights. The resulting values are then

summed.

j

weighted_sumj =^input_valuek * weighty

Where i is the neuron in the hidden layer and k is the input neuron.

H, = (.98 * 1) + (.65 * 2) + (.50 * 1) = 2.78

H2 = (.98 * 2) + (.65 * 2) + (.50 * 3) = 4.76

H3 = (.98 * 1) + (.65 * 1) + (.50 * 1) = 2.13

Figure 3.3: Feed-forward network

25

Calculate the output value. The output value for the neuron is the weighted

sum fed through an activation function. The logistic function will be used in

this network.

output_\aluei = logistic _ fiinction(weighted _sumi)

Where i is the neuron in the hidden layer.

U, = V(l+e2-7S) = .94

H2 = 1/ (1 + e"476) = .99

H3 = 1/ (1 + e213) = .89

Calculate the weighted sum for the output layer. This is the same as for the

hidden layer. The input value is know the output value of the hidden layer

J

I
J

weighted_sumi -^input _yaluek *'weightki

Where i is the neuron in the output layer and k is the hidden layer neuron.

O, = (.94 * -1) + (.99 * 1) + (.89 * 2) = -1.83

02 = (.94 * 1) + (.99 * -1) + (.89 * -2) = 1.83

• Calculate the output value. Use the same process as the hidden layer.

output _valuej = logistic_function{weighted_sumj)

Where i is the neuron in the hidden layer.

O, = 1/(1+ e1-83) = .86

02=l/(l+e183) = .14

The output values .86 and .14 are the actual outputs for the network. In this case

the desired output was 1 and 0. The next step is to adjust the weights in order to reach the

desired output. This process is accomplished through the back-propagation algorithm.

26

C. BACK-PROPAGATION ALGORITHM

Training an artificial neural network deals with optimizing the weights associated

with each individual neuron in order to produce the desired results. In a truly feed-

forward network, each neuron contributes to the overall error produced by the output

neurons. The error is produced by having the wrong weight values. It is impossible to

guess the correct value of each weight in the network. A method must be established to

choose these weight as to produce the correct output. The back-propagation algorithm is

one way of solving this problem.

The development of the back-propagation algorithm has made the multi-layer

neural network the most popular of the artificial neural networks. The back-propagation

algorithm seems to have been developed simultaneously by Rumelhart, Hinton, and

Williams in 1986, Parker in 1986, and LeCun in 1985 [Ref. 7]. The algorithm is rather

straight forward. If a designer has no idea what the weights for his network should be,

which is almost always the case, he can start with random weights and let the back-

propagation algorithm determine what the values should be. An optimal value for all of

the weights is hard to achieve, but determining the values within an acceptable level of

error is usually achievable. Based on an acceptable level of error, the back-propagation

algorithm adjust the weights until the level of error is within a given tolerance. Zero

tolerance on error is an unrealistic goal, rather a small percentage of acceptable error is

used.

The whole key to the algorithm is based on the gradient descent problem

illustrated in Figure 3.4. Adjusting weights must be done a little at a time in order to get

the best possible answer. The step toward the optimal solution is called the learning rate.

If too large of steps are taken, the training algorithm may jump back and forth on the

bowl and never reach an optimal solution. A very small step down the side of the bowl

will translate into a significant change in the x value. Figure 3.4 illustrates the change in

the value of x and how it will effect the ability of the net to reach the global minimum,

also known as the optimal solution. There are also local minimums that can be reached if

27

the step is too small. This means that the "optimal" values for the weights will not

produce the optimal solution. The way to get around falling into this trap is to choose a

small step in exchange for a long training period, or use trial and error by retraining the

network until you are satisfied with the results. Either way is time consuming.

Aggregate
Error

Weight y

Initial weight
Vector

Ideal
weight
vector

Delta

New vector

weight
vector

Figure 3.4: A pictorial representation of the gradient descent problem.

Another method often employed when training a network is to use a momentum

variable. The idea behind the momentum variable is to take big steps with the gain

variable and then the momentum variable is applied in order to further fine-tune the

network towards the optimal value for the weights. This method creates the effect of

speeding towards the optimal solution and then putting on the brakes and gradually

28

slowing down. The whole idea is to stop as close to the optimal solution without going

beyond the optimal solution and heading back up the other side of the bowl in Figure 3.4.

The multi-layered feed-forward neural network shown in Figure 3.3 will be used

to demonstrate how the back-propagation algorithm was employed in this thesis. The

back-propagation algorithm is outlined as follows using a three layer feed-forward

network:

• Calculate the output error for each neuron in the output layer. After the inputs

have been fed through the network and the output layer produces an answer

for each neuron in the output layer, the answer is compared to the expected

output answer.

Output Error = Expected - Actual

Output Error Ox = 1 - .86 = .14

Output Error 02 = 0 - .14 = -.14

• Calculate the total error for each element in the training set. The total output

error is calculated by summing the absolute values of each node in the output

layer. This is the total error for that element in the training set.

TotalOutputError = ^OutErr,
y=i

Where i is the number of neurons in the output layer.

Total Output Error = |.14| +1-.14|

• Calculate the total error for the training set. This variable will be updated as

every element in the training set is feed through the network.

Total Error = Total Error + Total Output Error

• Calculate the incoming error for the middle layer. The amount of error the

middle layer contributes to the output error is a two step process. First one

must notice that each node in the middle layer contributes an error to all of the

nodes in the output layer. With this in mind, the error at each output node

must be multiplied by the weight associated with the node in the middle layer.

29

These values are then summed to produce the incoming error for that

particular node in the middle layer.

IncomErr = £ {OutputErrorj * weightk)

Where j and k are which output node.

Incoming Error H, = ((.14 * -1) + (-.14 * 1)) = -.28

Incoming Error H2 = ((.14 * 1) + (-.14 * -1)) = .28

Incoming Error H3 = ((.14 * 2) + (-.14 * -2)) = -.56

This is the method used for dealing with propagating the output layer error

back in this thesis. Another method used is to figure the derivative of the

output layer error in order to propagate the actual error back. The above

method used in this thesis allows for a faster training period.

Calculate final error for each middle layer node. Calculating the final error

takes into account that an activation function was used to produce the error

value being propagated back. Therefore the values from the calculate

incoming error step must be fed back through the activation function. This is

achieved by calculating the derivative of the activation function. This is why

a non-linear function is used as the activation function. An activation function

with a smooth non-linear transition works the best. The logistic function is

used due to the ease of calculating the derivative.

Final _Error = Incommmg_Error* Derivative _of_activation_ function

For the logistics function, the derivative is the value at the middle layer node

multiplied by one minus the value at the middle layer node. See Figure 3.5.

Final Error H, = -.28 * .94(1 - .94) = -.0158

Final Error H2 = .28 * .99(1 - .99) = .0028

Final Error H3 = .56 * .89(1 - .89) = .0548

Calculate weight change for each output layer weight. At this stage in the

algorithm the learning rate must be taken into account. Since the amount of

30

error is now known, how far to move towards the optimal solution without

stepping over that solution must be determined. That is the function of the

learning rate. A large learning rate may miss the optimal solution, however a

small learning rate will take longer to train.

AWeightj = ß * OutputErrorj * InputValuesk

Where j is the weight to be adjusted, i is the error at the output node, k is the

value from the middle layer node and ß is the learning rate.

AO,W1 = .2*.14*.94 = .0263

AO!W2 = .2*.14*.99 = .0277

AO,W3 = .2*.14*.89 = .0249

output

-.0158 fm

input

Figure 3.5: Back-propagation

31

• Change weights for each output layer weight. Here all that is need is to add

the weight change calculated in the above step to the current weight value.

W, = -1 + .0263 = -.9737

W2=l+.0277 = 1.0277

W3 = 2 + .0249 = 2.0249

• Calculate weight change for middle layer weights. This step follows the same

equations as the output layer.

AWeightj = ß* OutputErrort * InputValuesk

AHM = .2 * -.0158 * .98 = -.0031

AH,W2 = .2 * -.0158 * .65 = -.0021

AH,W3 = .2 * -.0158 * .50 = -.0016

• Change weights for each middle layer weight.

W, = l+-.0031=-.9969

W2 = 2+ -.0021 = 1.0079

W3 = 2+ -.0016 = .9984

• Repeat process for each element in the training set. Every element in the

training set must be fed through and the weights adjusted once for each

element. Then in the next step, the sum of the errors for each element in the

training set is compared against the acceptable level of error. If the error is

not in tolerance, the whole process is repeated. This prevents the training of

each element in the training set to the acceptable level of error one at a time.

The results ofthat method would be adjusting the weights for the first element

then the next and finally the last one. However this would lead to the net

being training only for the last element in the training set and not the other

elements. Figure 3.6 shows the results of the above calculations for one side

of the network.

32

output
1 0

-.9737 Q)20249
i02j

(JL (H2)
L,9984^-T^

(m).

.9969 I «7?^^

(iiT (12 (l3

.98^ .65 |

input

.50 |

Figure 3.6: Adjusted weights

• Repeat the entire process until Total Error is at an acceptable level. This

thesis uses the method of totaling up the errors and comparing them to an

acceptable level of error. Other methods include the least mean square and

standard deviation. Whatever the method, the goal is to determine the

stopping point of the training process.

That was just one iteration of the back-propagation algorithm. Usually many

iterations are needed in order to reach the acceptable level of error imposed by the

designer. Choosing a large learning rate can also lead to jumping back an forth across the

bowl as described in Figure 3.4. If the network did not get stuck in a local minimum, it

now contains an acceptable solution for the given training data that is within the chosen

acceptable level of error. Training a network is usually very computationally expensive.

The actual ammunition neural network is described in the next chapter.

33

34

IV. AMMUNITION NETWORK

A. INTRODUCTION

The intent of this chapter is to explain in detail the entire process of setting up the

ammunition network. There are a significant number of tasks that need to take place

before an artificial neural network can be implemented. First, the training set must be

chosen. The training set is the set of objects that the neural network is to identify. Data

preparation is probably the most important phase. The accuracy of the network is based

upon the training data that is presented to it. So much relies on the data that it is

important to recognize if this part fails the whole experiment fails. And last, but not least,

the network must be implemented.

B. AMMUNITION TYPES

The ammunition used for this thesis was chosen based upon commonly found

types in impact areas and availability. A U.S. Army ordnance officer, CPT Paul

Arcangeli, was consulted for the training set and the items were chosen based on their

availability at a local ordnance unit. The training set was limited to five common rounds

due to the amount of time necessary to record the data, and that this should demonstrate a

proof of concept. The following is a list of the types of ammunition used.

• 60mm mortar round (Figure 4.1)

• 81 mm mortar round (Figure 4.2)

• 105mm artillery round (Figure 4.3)

• 105mm high explosive anti-tank round (Figure 4.4)

• 3.5 inch rocket (Figure 4.5)

The training set is made up of two distinct sets of the above ammunition and is

displayed in Figures 4.6 and 4.7. The test set was derived from separate readings of the

second set of ammunition.

35

Figure 4.1: 60mm mortar.

Figure 4.2: 81mm mortar.

Figure 4.3: 105mm artillery round.

36

Figure 4.4: 105mm HEAT round.

Figure 4.5: 3-5in rocket.

Figure 4.6: Training set 1.

37

Figure 4.7: Training set 2.

C. DATA PREPARATION

1. Magnetometer

As was stated in Chapter I, the magnetometer is the sensor that was used in this

thesis. The GA-72Cd Magnetic Locator has an analog audio signal and a digital display

of the signal. The display shows the strength of the signal and the polarity of the signal.

The magnetometer measures the difference in signal strength between two sensors located

in the shaft of the magnetometer. One sensor is placed towards the bottom of the shaft

and the other is towards the top of the shaft. The digital readout of the signal is a three

digit number ranging from -36.0 to 36.0. The orientation of a piece of metal might be

determined by the polarity of the signal. The polarity is indicated by the positive or

negative reading. A 175mm projectile can be detected up to five feet in the ground.

There are four sensitivity levels on the magnetometer [Ref. 2]. Sensitivity level 2 was

used for the data collection. The sensitivity level ranges from 1 to 4, with level 4 being

the most sensitive.

Placement of the magnetometer in reference to the round played an important roll.

The strength of the signal varies with the distance from the bottom of the magnetometer

to the round. For this reason, the distance from the magnetometer to the round was varied

in the two training sets. As will be discussed in the conclusions, this fact will lead to a

38

very large training set when depths and orientations are taken into account. In order to

limit the size of future training sets some assumptions must be made. The orientation of

the round will need to be determined based on the centroid of the round and the polarity

at each end. If this can be determined then the data can be oriented based off a known

orientation. It is hoped that there is an automatic technique that will bring the data of a

buried round to the reference point of surface laid. After these two problems are solved

the next step is to account for possible angles of the round.

2. Data Collection

The readings were taken at the Naval Postgraduate School Beach in Monterey,

California. Therefore, the terrain was sand. The zero reading for the magnetometer was a

+.08. A 31cm x 35cm grid was used to record the data. Each grid square was 2cm x

2cm. This grid square setup produced 1085 readings per piece of ammunition. The data

was recorded on site and entered into an input file for later use with the neural network.

An important part of the data collection was a wooden frame on which the

magnetometer was mounted (Figure 4.8). The frame allow for the magnetometer to be

moved with two degrees of freedom along the x and y axis of the grid square. The

placement of the round in the frame was very important for the neural network to be able

to recognize a round it had seen before. The following list will specify the positions of

each round.

• 60mm mortar - Top - 35.5cm from left edge of grid,12.5cm from top edge of

grid. Bottom-35.5cm from left and 20 cm from bottom. Highest point on

round - 4 cm from bottom of magnetometer.

• 81mm mortar - Top - 35.5cm from left, 7cm from top. Bottom - 35.5cm from

left, 5cm from bottom. Highest point - 2.5cm.

• 105mm heat round - Top - 36.5 cm from left, 5cm from top. Bottom - 36.5cm

from left, 4cm from bottom. Highest point - 2.5cm.

39

• 105mm artillery round - Top 37cm from left, 14.5cm from top. Bottom -

36cm from left, 12.1cm from bottom. Highest point - 2.5cm.

• 3-5in rocket - Top - 36.5cm from left, 5cm from top. Bottom - 36.5cm from

left, 12cm from bottom. Highest point - 2.5cm.

The above measurements apply to the second training set and the test set. The

positions of the first training set were centered in the frame. This will allow for a

variation in the overall training set and allow the network a different look at the same

type of round. The readings are different for the two training sets due to the precision of

the placement. As will be discussed in the conclusions, this gives an indication of the

number of possibilities of training sets.

Figure 4.8: Wooden frame and magnetometer.

D. LISP IMPLEMENTATION OF NETWORK

Lisp was chosen as the prototyping language for the neural network due to the

ease of list manipulation of each input and weight pairs. If the input and the weights are

viewed as a list, Lisp will allow for easy manipulation. An object oriented approach was

taken to the implementation of the multi-layered feed-forward neural network. Having

no idea of the number of layers or number of neurons in each layer that is needed to get

40

the best solution, the object oriented approach allows for new instantiations of neurons

and layers if the design were to change. Unfortunately, with a relatively large input size,

this could lead to a substantial overhead. The neural network is made up of neuron

objects, layer objects and a network object.

Objects in Lisp are instantiations of classes. Classes contain slot values which

store the values that belong to the object. Slot values are the equivalent to data members

in C++ . Methods are the functions that are allowed to interact with the slot values. They

are equivalent to member functions in C++. The following classes will be explained in

terms of slot values and methods. The back-propagation, lisp file is in Appendix D and

contains the algorithm for training the network. Appendix E contains the user interface

functions for creating the objects, building the input data and saving the weights

associated with the network. For further explanation of the code, see the appendices.

The comments should serve as a guide as to what is happening.

1. Neuron Class

The neuron object contains the slot values output-value and a weight-value. The

code is in Appendix A. Methods include the initialization-neuron and neuron-activation.

The slot values weight-value and output-value are accessed by there respective accessor

names weight-vector and output-vector.

(defclass neuron ()
((weight-value :accessor weight-vector

:initarg :weight-value
:initform '())

(output-value :accessor output-vector
:initarg :output-value
:initform ' (1))))

The initialize-neuron method takes as parameters, a neuron object, an input-

length, and a weight-vector. If a weight list is not passed to the initialization method,

random weights are created via make-random-weights function. In order to determine

how many random weights to create, make-random-weights is passed input-length. A

41

random variable seed is also passed to make-random-weights. If a weight list is sent to

initialize-neuron then weight-vector is set to that list.

(defmethod initialize-neuron ((my-neuron neuron)
input-length weight-vector1)

(if (null weight-vectorl)
(setf(weight-vector my-neuron)

(make_random_weights input-length 2.0))
(setf(weight-vector my-neuron) weight-vectorl)))

The neuron-activation method calls my-summation which returns the summation

of the input data multiplied by the weight vector for that neuron. This value is fed to the

activation function by the call to the sigmoid function. The value returned from the

sigmoid function is stored in the output-value slot of the neuron.

(defmethod neuron-activation ((my-neuron neuron) layer-input)
(setf (output-vector my-neuron)

(list (sigmoid (my-summation (weight-vector my-neuron)
layer-input)))))

2. Layer Class

The layer object is a subclass of the neuron class. The code is in Appendix B. It

inherits all of the properties of the neuron class plus a list of the neurons that are in that

layer, called node-value, an input-value slot containing the data input values, and a

number slot corresponding to the number of neurons in the list. Node-list, input-vector,

and number-value are the accessor names for node-values, input-value, and number

respectively.

(defclass layer (neuron)
((node-value :accessor node-list

rinitarg :node-value
:initform'((make-instance 'neuron))

(input-value :accessor input-vector
:initarg :input-value
:initform '())

(number :accessor number-value
:initarg :number
:initform 1)))

42

Layer class has four methods: initialize-layer, initialize-node-list, activate-layer

and activate-layer-list. Initialize-layer sets all of the slot values of layer class. Initialize-

layers parameters are a layer object and the layer parameters. The layer parameters

contain the number of neurons in the layer, the input list, and the weight list. The node-

list is set by calling build-layer which creates the neurons in the node-list. Initialize-layer

then sets the values of the neurons by calling initialize-node-list.

(defmethod initialize-layer ((my-layer layer) layer-params)
(setf(number-value my-layer) (first layer-params))
(setf(input-vector my-layer) (second layer-params))
(setf(weight-vector my-layer) (third layer-params))
(setf(node-list my-layer) (build-layer (first layer-params)))
(initialize-node-list my-layer layer-params))

Initialize-node-list iteratively steps through the node-list and taking one neuron at

a time and calls initialize-neuron which sets all of the slot values of the neuron. Notice

that the weight list for the neuron must also be sent to initialize-neuron. If the weight list

is null, the call to initialize-neuron contains the null weight list, else the weight list is

stepped through in the same manner as the node-list.

(defmethod initialize-node-list ((my-layer layer) layer-params)
(do* ((i 0 (+ i 1))

(neuronl (first (node-list my-layer))
(nth i (node-list my-layer)))

(weightl (first (third layer-params))
(if (null (third layer-params))

(first (third layer-params))
(nth i (third layer-params)))))

((> i (- (length (node-list my-layer)) 1)))
(initialize-neuron neuronl

(length (input-vector my-layer)) weightl)))

The method activate-layer sets the output-vector slot of the layer to the list of

output values returned by the call to the method activate-layer-list. Activate-layer-list

iteratively steps through every neuron in the node-list and calls activate-neuron. The

results of activate-neuron are consed together to build the output-vector.

43

(defmethod activate-layer-list ((my-layer layer))
(do* ((i 0 (+ i 1))

(layerl (cons (first (neuron-activation
(first (node-list my-layer)) (input-vector my-layer))) ())

(cons (first (neuron-activation (nth i (node-list my-layer))
(input-vector my-layer))) layerl))

)
((> i (-(length (node-list my-layer)) 2)) (reverse layerl))

))

3. Network Class

The network class is a subclass of the layer class. The code is in Appendix C. It

inherits all of the slot values of the layer class. Since the layer class is a subclass of the

neuron class, the network class also inherits all of the slot values of the neuron class. The

only additional slot value is the nodes-layer-value which can be accessed by the nodes-

per-layer accessor.

(defclass network (layer)
((nodes-layer-value :accessor nodes-per-layer

:initarg :nodes-layer-value
:initform ' (1))))

The network class contains the four methods: initialize-network, initialize-

network-layers, activate, and activate-network. They all serve the same purposes as the

methods in the layer class just at a higher level of abstraction. Initialize-network sets all

of the slot values to the values of the network parameters that are passed in. The network

parameters consist of a list that contains two list. The first list is the number of neurons,

the input data, and the weight list for the first layer. The second list is the number of

neurons, input data and weight list for the second layer. The input data for the second

layer is initialized to the input data for the first layer, but it is changed to the output-

vector of the first layer when the network is activated. It also calls build-network which

makes instances of layers.

44

(defmethod initialize-network ((my-network network) network-params)
(setf(input-vector my-network) (second (first network-params)))
(setf(number-value my-network) (length network-params))
(setf(nodes-per-layer my-network) (list(first (first network-params))

(first(second network-params))))
(setf(node-list my-network) (build-network

(length network-params)))
(initialize-network-layers my-network network-params))

Initialize-network-layers strips off each layer from the node-list of the network

and passes it to initialize-layer which sets up the layer and calls initialize-neuron to

initialize each neuron in the layer.

(defmethod initialize-network-layers((my-network network)network-params)
(do* ((i 0 (+ i 1))

(layerl (first (node-list my-network)) (nth i (node-list
my-network)))

)
((> i (- (length (node-list my-network)) 1)))
(initialize-layer layerl (nth i network-params)))

)

Activate sets the output-vector of the network to the value returned from activate-

network. Activate-network strips off one layer at a time and passes it to activate-layer

which sends each neuron in the layer to activate-neuron. It also sets the input value of

the second layer to the output value of the first layer.

(defmethod activate ((my-network network) my-network-input)
(set-network-input my-network my-network-input)
(activate-network my-network)
(setf(output-vector my-network)

(output-vector (first (last (node-list my-network))))))

(defmethod activate-network ((my-network network))
(do* ((i 0 (+ i 1))

(output-layer(activate-layer (first (node-list my-network)))
(if (nth i (node-list my-network))

(activate-layer (nth i (node-list my-network)))))

)
((> i (- (length (node-list my-network)) 1)))
(if (nth (+ i 1) (node-list my-network))

(setf(input-vector (nth (+ i 1) (node-list my-network)))
output-layer))))

45

4. Back-propagation Algorithm

The back-propagation algorithm was implemented in the backprop.lisp file in

Appendix D. The function train takes a network object, input-vector, and acceptable-

error as parameters. Train calls train-set with the network object and the input-vector

until the error is within the acceptble-error level.

(defun train (my-network input-vector acceptable-error)
(do* ((error (train-set my-network input-vector)

(train-set my-network input-vector))
((< error acceptable-error) 'done)

The input-vector consist of each of the training sets input data followed by the

expected output for that particular run through the network. The input vector in this

network consist of a list containing 5 list. Each of the five list are made up of two list

containing the variable refering to the input data for that round and the expected output

for that round. For instance, one such input vector would look like this:

((81mm(l 0 0 0 0))(60mm(0 1 0 0 0))(arty(0 0 1 0 0))(heat(0 0 0 1 0))(3-5in(0 0 0 0 1)))

Train-set trains the network on the input-vector by calling train-network

iteratively with each of the five list in the input-vector. Compute-error computes the

error for each round. The errors for each round, current-error, are added to total-error

and compared to the acceptable-error in train to determine when to stop training the

network.

(defun train-set (my-network input-vector)
(do* ((i 0 (+ i 1))

(current-error (compute-error
(train-network my-network(first(first input-vector))

(second (first input-vector))))
(if (nth i input-vector)

(compute-error (train-network my-network
(first (nth i input-vector))
(second (nth i input-vector))))))

(total-error current-error
(if (nth i input-vector)

(+ total-error current-error))))
((> i (- (length input-vector) 2))total-error)))

46

Train-network activates the network with one of the rounds and computes the

output-error-vector by calling calc-output-error with the expected-output and the output-

vector of the network. The hidden-layer error-vector is calculated by calling hidden-

layer-errors with the output-error-vector and the node-list in reverse order. The node-list

of the network is the layers. By reversing the node-list, the layers are iterated through

from output layer to input layer in the function hidden-layer-errors. The function

hidden-layer-errors will be discussed later. Now that the output-error-vector and the

hidden-layer-error-vector are known, the weights at each neuron can be changed. This is

accomplished by calling calculate-weight-change with the node-list in reverse and a list

containing the output-error-vector and the hidden-layer-error-vector. Calculate-weight-

change is also an involved function and will be discussed later. At this point the weight-

vector at the layer level has been changed and now the weight-vector for each neuron

needs to be changed. Set-neuron-weights accomplishes this task.

(defmethod train-network ((my-network network)input-list
expected-output)

(activate my-network input-list)
(let* ((output-error-vector (calc-output-error expected-output

(output-vector my-network)))
(hidden-layer-error-vector

(hidden-layer-errors output-error-vector
(reverse (node-list my-network))))

)
(calculate-weight-change (reverse (node-list my-network))

(cons output-error-vector
hidden-layer-error-vector))

(set-neuron-weights (node-list my-network))
(output-vector (first (last (node-list my-network))))
output-error-vector

))

47

The function hidden-layer-errors calculates the incoming error of the hidden layer

by calling calc-inc-errors with the error-vector and a transposed weight-vector. In effect

what calc-inc-errors does is multiply the output-error caused by the neuron with the

weight-vector and adds up the values in the resulting list. This value, called the

incoming-error in the function calc-final-error, is fed back through the sigmoid function

by calculating the derivative of the sigmoid function.

(defun hidden-layer-errors (error-vector layer-list)
(do* ((i 0 (+ i 1))

(new-error-vector
(cons (calc-final-error

(calc-inc-errors error-vector
(conv-weight-list(weight-vector(first layer-list))))

(first layer-list))
0)

(cons (calc-final-error
(calc-inc-errors error-vector

(conv-weight-list (weight-vector(nth i layer-list))))
(nth i layer-list))

new-error-vector)))
((> i (- (length layer-list) 2)) (reverse new-error-vector))))

(defmethod calc-final-error (incoming-error-vector layer)
(let ((vectorl (input-vector layer)))

(mapcar #'calculate-final-error vectorl incoming-error-vector))

)

(defun calculate-final-error (node-value incoming-error)
(* incoming-error node-value (- 1 node-value)))

(defun calc-inc-errors (output-error-vector output-weights)
(do* ((i 0 (+ i 1))

(inc-error (cons (my-summation output-error-vector
(first output-weights))

0)
(cons (my-summation output-error-vector

(nth i output-weights))
inc-error))

)
((> i (- (length output-weights) 2)) (reverse inc-error)))

48

Calculate-weight-change iterates through each layer in the network calling calc-

wt-chg with the layer-list, error-vector, and weight-vector for that layer. Calc-wt-chg

calculates the amount of change by calling calculate-delta-weight with the learning rate

(*step*) and the above parameters. Calculate-delta-weight multiplies the *step* with

error and the arc-weight (original value at the neuron). Calc-wt-chg then calls change-

weight which actually changes the weights for that layer. It is not easy to see what is

actually going on here, but it follows the back-propagation algorithm laid out in Chapter

III.

(defun calculate-weight-change (layer-list error-vector-list)
(if (first layer-list)

(setf(weight-vector (first layer-list))
(calc-wt-chg (first layer-list) (first error-vector-list)

(weight-vector (first layer-list)))))
(if (first layer-list)

(calculate-weight-change (cdr layer-list) (cdr error-vector-list))))

(defun calc-wt-chg (my-layer error-vector weight-vector-list)
(do* ((i 0(+ i 1))

(weightl (cons
(change-weight

(calculate-delta-weight *step*
(first error-vector) (input-vector my-layer))

(first weight-vector-list)) ())
(cons (change-weight

(calculate-delta-weight *step*
(nth i error-vector) (input-vector my-layer))

(nth i weight-vector-list)) weightl)))
((> i (- (length error-vector) 2)) (reverse weightl))))

(defun calculate-delta-weight (beta-shift error arc-weight)
(do* ((i 0 (+ i 1))

(delta-weight (cons (* beta-shift error (first arc-weight)) ())
(cons (* beta-shift error (nth i arc-weight)) delta-weight))

)
((> i (- (length arc-weight) 2)) (reverse delta-weight))

))

(defun change-weight (vectorl vector2)
(mapcar #'+ vectorl vector2))

49

5. User Interface

The user interface is in the ammo-rec.lisp file found in Appendix E. This file

contains three driver functions that the user can call in order to run the ammunition neural

network. The first is the ammo-recognition function which creates a new network by

making a network object called ammo-network. It sets up the network parameters that are

passed to initialize-network along with the network object. Next, the functions calls train

which invokes the back-propagation algorithm. Train continues to run until the

acceptable level of error, which is passed to train is reached. Once the network has

reached the acceptable level of error, the weights are written to a file called ammo-

wgts.dat. This is how the network object is saved. After all, the only portion of the

network that cannot be easily reproduced are the weights.

(defun ammo-recognition ()
(defparameter *step* .2)
(setf output-type-list '("81mm" "60mm" "105mm" "105heat" "3.5in"))

(format t "In build-my-input ~%")
(build-my-input)
(setf ammo-parameters (list(list (length 81mm) 81mm ())

(list (length output-type-list) 81mm ())))
(format t "In make-instance ~%")

(setf ammo-network (make-instance 'network))
(format t "In initialize ~%")

(initialize-network ammo-network ammo-parameters)
(format t "In train ~%")

(train ammo-network (build-ammo-input) '.2)
(output-file "data/ammo-wgts.dat")
(save-weights ammo-network))

The second function that invokes the network is the load-ammo-net function.

This function is used when the user wants to load a network that has already been trained.

The function retrain allows the user to continue training the network with current

(defun load-ammo-net (wgts)
(setf output-type-list '("81mm" "60mm" "105mm" "3.5in" "105heat"))
(build-my-input) .
(setf parameters (list (list (length t3-5in) t3-5in (first wgts))

(list (length output-type-list) t3-5in (second wgts))))
(setf ammo-network (make-instance 'network))
(initialize-network ammo-network parameters))

50

weights and a different step value, as well as a different level of acceptable-error. The

step value is the learning rate of the network.

(defun retrain-ammo-net (wgts)
(defparameter *step* .1)
(setf output-type-list '("81mm" "60mm" "105mm" "3.5in" "105heat"))
(build-my-input)
(setf parameters (list (list (length t3-5in) t3-5in (first wgts))

The user can modify the ammo-net function that activates the network. The

ammo-net function sends the test input to activate and outputs the type of round the net

decides the input resembles.

(defun ammo-net()
(format t "input: 60mm output: ~A~% "

(determine-output(activate ammo-network tst60mm)))
(format t "input: 81mm output: ~A~% "

(determine-output(activate ammo-network tst81mm)))
(format t "input: 105mm arty output: ~A~% "

(determine-output(activate ammo-network tstl05mm)))
(format t "input: 3.5in rocket output: ~A~% "

(determine-output(activate ammo-network tst3-5in)))
(format t "input: 105mm heat output: ~A~% "

(determine-output(activate ammo-network tstheat))))

This program was also written in C++ to improve performance by reducing

training time. The next chapter summarizes the findings and lessons learned in this

thesis.

51

52

V. RESULTS

A. AMMUNITION GRAPHS

The actual data values collected on each round can be found in appendix E. The

31 x 35 matrix of data values is a bit overwhelming, so all of the data collected on the

rounds was graphed using MATLAB. The graphs show both the similarities and

differences in the rounds. Figures 5.1 - 5.5 contain the graphs of the ammunition. As

you can see, the 105mm heat round and the 81mm mortar graphs are virtually identical.

This fact will explain the results of the testing phase.

Figure 5.1: 60mm mortar input data graph.

53

Figure 5.2: 81mm mortar input data graph.

Figure 5.3: 105mm artillery input data graph.

54

Figure 5.4: 105mm HEAT input data graph.

Figure 5.5: 3-5in rocket input data graph.

55

B. TRAINING

The amount of time a network takes to train is directly related to the values of the

starting weights, learning rate and acceptable error. If the starting weights are close to the

ideal weights then the time to train the network is less. If the learning rate is too small

the network will take a long time to reach the optimal weights. If the learning rate is too

large then the error will jump back and forth across the bowl (Figure 3.3). The acceptable

level of error is the stopping point, so it will directly effect the time a network takes to

train. All of these factors, along with using Lisp, make it hard to judge the performance

of the back propagation algorithm.

The current network took 64 hours to train on an IRIX System V.4. Random

weights, a learning rate of .2 and an error rate of .2 were used. Only 13 iterations of feed

forward and back propagation were executed. The training phase produce 13.1 MB of

data containing the weights for the neural network.

From these figures it is obvious that Lisp took a lot of the time to declare

variables, dynamically allocate memory, compute the calculations and make the changes

in the weights. This neural network would not work on a Sun OS due to the

unavailability of enough heap space. The above IRIX OS release 5 with four 40 MHZ

processors and 98 MB of memory was used to train the network. The network was

originally written in a recursive format due to the nature of Lisp, but it had to be rewritten

iteratively in order to have enough heap space to run. The nature of the neuron objects

also carried a lot of overhead with them. Each neuron object has a weight vector of 1085

values and there are 1095 neuron objects. These figures translate into 1.18 x 106 values

that have to be represented as variables. A network with a relatively large input set

would run faster if it were written as functions, multiplying matricies, the least amount of

overhead, the better.

Figures 5.6 and 5.7 show a graph of the error values after each iteration when the

ammunition network was trained. The graph displays the error values on the left and the

56

iterations along the bottom. Notice how the iterations jump back and forth across the

bowl. Remember a .2 error and .2 learning rate was used to train this network.

5
e
r 4
r 3 o
r 2

1

iteration

Figure 5.6: Graph of error convergence for iterations 1-6.

i k

e
r 2 —

, t::::::::.".1:::::-::::-:-:-:-:- •::;~::Lf
0 v •
r 1 —

II i T
8 1012 13

1 1 1 *
119 7

iteration

Figure 5.7: Graph of error convergence for iterations 7-13.

TESTING

Once the neural net was trained, the next step was to test the network on data it

had not seen before. A third set of data was collected on the second training set of

ammunition. These readings were different from the original training set which ensured

the network had not seen the data before. To say a network has seen data before means it

has been trained on the data. The following results point out the type of ammunition fed

to the network, the amount of time it to come up with the answer, the amount of memory

used and how the network classified the ammunition. The order in which the output list

57

classifies the ammunition is 81mm mortar, 60mm mortar, 105mm artillery, 3-5in rocket,

and 105mm HEAT. For instance, the 0.0 in (0.0 6.91607e-26 1.59656e-8 1.0 6.895369e-

13) is the 81mm mortar, 6.91607e-26 is the 60 mm mortar, 1.59656e-8 is the 105mm

artillery round, 0.0 is the 3-5inch rocket, and 6.895369e-13 is the HEAT round. The 1.0

shows that the network decided the input data was a 3-5in rocket. All of the other

numbers are essentially zero due to the negative exponents.

• 3-5in rocket

[3] user(ll): (time (activate ammo-network tst3-5in))

; cpu time (non-gc) 40,790 msec user, 390 msec system

; cpu time (gc) 10,380 msec user, 40 msec system

; cpu time (total) 51,170 msec user, 430 msec system

; real time 51,695 msec

; space allocation:

4,742,615 cons cells,; 0 symbols, 37,968,408 other bytes

(0.0 6.91607e-26 1.59656e-8 1.0 6.895369e-13)

105mm artillery

[3] user(12): (time (activate ammo-network tstl05mm))

; cpu time (non-gc) 40,980 msec user, 270 msec system

; cpu time (gc) 9,120 msec user, 40 msec system

; cpu time (total) 50,100 msec user, 310 msec system

; real time 50,877 msec

; space allocation:

4,742,592 cons cells,; 0 symbols, 37,966,920 other bytes

(0.0 0.0 1.0 0.026313068 0.8945341)

58

• 60mm mortar

[3] user(13): (time (activate ammo-network tst60mm))

; cpu time (non-gc) 41, 330 msec user , 80 msec system

; cpu time (gc) 11, 620 msec user , 70 msec system

; cpu time (total) 52, 950 msec user , 150 msec system

; real time 53,547 msec

; space all ocation:

4,742 ,592 cons cells, 0 symbols, 37,966, 920 other bytes

(0.0 1 .0 0. 01103451" ' 3 4060365e- -8 4. 867868^ e-9)

81mm mortar

[3] user(14): (time (activate ammo-network tst81mm))

; cpu time (non-gc) 41,590 msec user, 80 msec system

; cpu time (gc) 9,200 msec user, 50 msec system

; cpu time (total) 50,790 msec user, 130 msec system

; real time 51,062 msec

; space allocation:

4,742,592 cons cells,; 0 symbols, 37,966,920 other bytes

(5.8375394e-14 1.521067e-13 4.5806116e-13 4.017225e-10 0.99741983)

105 HEAT

[3]user(15):(time (activate ammo-network tstheat))

;cpu time(non-gc)41,360 msec user, 60 msec system

;cpu time (gc) 12,480 msec user, 60 msec system

;cpu time(total) 53,840 msec user, 120 msec system

; real time 54,085 msec

; space allocation:

4,742,592cons cells,;Osymbols,37,966,920other bytes

(3.7480947e-29 7.8907937e-15 3.702611e-ll 3.8968346e-15 1.0)

59

The average of the real time taken to compute an answer after training is 52.253

seconds. The amount of memory used was 42.7 MB. The test phase shows that 4 out of

5 of the rounds were correctly identified. In the test data, the 81mm mortar was the only

round that was not correctly identified. It was identified as a 105mm HEAT round with

.99 out of 1.0 accuracy. However all of the other pieces of ammunition were correctly

identified with a precision of 1.0. A look at the graph of the 81mm mortar and the

105mm HEAT rounds will show a remarkable similarity. The results might have been

better if there were not max readings of -36.0 and 36.0. The HEAT round would have

had a higher peak than the 81mm mortar. When the training data was feed through the

network all of the ammunition was correctly classified. The 81mm mortar was classified

as an 81mm mortar.

Further testing revealed that when data the network had not seen before and was

not trained to identify was input, the network gave false positives. Readings were taken

on a tin can and the network identified the can as an artillery round with a 1.0 accuracy.

This result was an unfortunate turn of events. Hopefully, the network would have came

up with low numbers, .70 or less, on all of the outputs for the tin can. An analysis of the

graph of the tin can and the artillery shell revealed that the two sets of input data were

similar but not identical. Figure 5.8 shows the graph of the tin can.

Figure 5.8: Tin can input data graph.

60

VI. CONCLUSIONS

A. THESIS QUESTIONS

The goal of this thesis was to determine if an artificial neural network was capable

of correctly identifying unexploded ordnance. In making this determination the

following thesis questions were addressed:

• Are artificial neural networks able to correctly identify, within a certain degree

of precision, various type of unexploded ordnance both surface laid and

buried?

• What type of neural network architecture is best for the job?

• What is the training set to be used in the training of the neural network?

• With what precision are the objects correctly identified?

Are artificial neural networks able to correctly identify, within a certain degree of

precision, various type of unexploded ordnance both surface laid and buried? It has been

shown that a neural network is capable of identifying 4 out of the 5 pieces of ammunition

with a .99 or higher certainty. These results are based on data inputs from a test set made

up of a 60mm mortar, 81mm mortar, 105mm artillery round, 105mm HEAT round and a

3-5in rocket. The amazing part of this result is that only two sets of data on the above

ammunition were used to train the network. A neural network is trained to recognize a

pattern. The more variations ofthat pattern used to train the network, the more efficient

the network is in correctly classifying a pattern that is slightly different from the pattern

used to train the network. Yet, the multi-layer feed-forward artificial network was able to

correctly identify 4 pieces of ammunition with only two sets of training data.

The quality of the sensor and the limited range of output values lead to the failure

of the network to correctly identify the 81mm mortar. The range of the sensor is -36.0 to

36.0. Both the 81mm mortar and the 105mm HEAT round reached the maximum value

of the sensor in the same area of the grid. If the sensor's maximum value was higher, the

61

two rounds would have different values in the center of the grid. Therefore, the network

would be able to distinguish between the two rounds.

When the two sets of training data were input in to the network, 100% of the

ammunition was correctly identified. This fact also leads me to believe that with more

training data the network would be able to distinguish between the 81mm mortar and the

105mm HEAT round of the test set.

Where as the test set results are encouraging, the failure of the network to not

identify the tin can is an area of concern. However, when the network was retrained with

the tin can included in the training set to produce all zeros, the network trained. This

shows that if false positives come up on certain types of objects, the network can be

trained to not recognize the objects. This may allow a neural network to be constructed

that could be a useful tool in clearing ranges.

Only surface laid ammunition was tested in this thesis. The problem with a

network correctly identifying buried ammunition is one of limiting the number of

possibilities. There are an infinite number of possible ways the piece of ammunition

could be buried in the ground. The number of possibilities span from the depth of the

round to the angle of the round. Each of these possibilities will yield a different set of

input data. Therefore, the problem becomes one of reducing the above infinite set to a

finite set by limiting the number of angles and depths at which readings are taken.

Another more viable options is to develop a mathematical equation that would normalize

the data by bringing the input readings of a buried round to a base case of the above

surface laid readings. This equation would be based on finding the centroid of the

magnetometer readings of the round and then orienting the round based upon the strength

of the readings.

What type of neural network architecture is best for the job? A multi-layered

feed-forward neural network with the back propagation training algorithm was used for

the ammunition recognition network. This network was chosen due to its capabilities as a

pattern classification network. Execution speed and the number of layers were also a

62

major determining factors in choosing an architecture. Once a feed-forward network is

trained, the actual execution time is very fast. With 1085 neurons in the input layer,

keeping the number of layers to a minimum also contributes to the execution time.

What is the training set to be used in the training of the neural network? As

mentioned above, a training set consisting of over 1000 data points was collected for 2

sets of a 60mm mortar, 81mm mortar, 105mm artillery round, 105mm HEAT round, and

a 3-5in rocket. These rounds were chosen because they are common types of UXO's and

because of their availability at a local ordnance unit.

The last thesis question of what precision the objects are correctly identified has

already been addressed. Four of the five rounds were correctly identified with a precision

of .99 or better with only two training sets of data.

B. LESSONS LEARNED

Gathering the data was the most time consuming process of this research. This

step must be automated. Any network improves in performance with the amount of

training data. This network was trained on only two sets of the ammunition set. Ten to

100 or even 1000 sets of data would have been much more effective. Using a large

training set is a normal practice. The greater the number of training sets of different data

on the same object, the better any neural network will perform. Automating this data

collection process using the Naval Postgraduate School autonomous vehicle, Shepard,

would have made gathering more data possible.

The position of the round when gathering data is critical to the success of the

network. Moving the round up, down, left or right, will cause the network to not

recognize the pattern. This problem leads back to the gathering of more data. The more

data gathered on the training set in different positions, the better chance the network has

to identify the test set of ammunition. This is critical when it comes to sending Shepard

out in the field to identify UXO's. More than likely, the round will not be in the same

position as it was when the network was trained.

63

Using LISP as the language for the prototype was very helpful. But in order for

the network to achieve the level of speed required of a real time system, the program

must be rewritten in C++ or implemented in hardware. Hardware is the better solution. I

rewrote the network in C++ in order to achieve a faster training time (see Appendix G).

Training time in LISP was taking hours to iterate through one piece of ammunition in the

training set. The C++ version was written with as little overhead as possible and was able

to iterate through the entire training set in a matter of minutes, which was an order in

magnitude improvement.

C. RECOMMENDATIONS FOR FUTURE RESEARCH

The most important recommendation for future research is to mount the array of

sensors on Shepard. This will allow for the automated gathering of a large amount of

training data. I recommend the use of a one dimensional array of 31 sensors on a

platform out in front of Shepard. The further in front of Shepard this array can be placed

the better, because Shepard is made of metal and this may affect the sensors.

Future research must include the ability to determine the identity of a buried

object. Automating the data collection will aid in the development of a method of

determining what type of rounds are buried in the ground. Whether the decision is made

to gather an exhaustive amount of data to train the network on or develop an equation to

determine the identity of a buried object, automating the data collection is essential.

The concept of using an artificial neural network to identify UXO's is a valid

concept and should be pursued further. Although I was unable to prove that a neural

network will identify a UXO from a NON-UXO, the fact that the network can identify

one UXO from another is a very significant finding. I believe there exists a set of weights

that will make the neural network distinguish a UXO from a NON-UXO. The only way

this will be proven is the collection of more data through automating the process.

64

APPENDIX A: SOURCE CODE (NEURON CLASS)

;;File: neuron.lsp Franz Common Lisp

;; Jeff May

;;21 Mar 97

;;Contains the neuron class

;; Copyright © 1997 Jeff May

;;NEURON CLASS

;;creates a neuron class with a weight value list, and output value list.

(defclass neuron ()

((weight-value : accessor weight-vector

:initarg :weight-value

:initform '0)

(output-value : accessor output-vector

:initarg : output-value

:initform '(I))))

65

NEURON ACTIVATION

Feeds the weighted sum of the input vector to the activation

function inorder to produce an output for the neuron.

(defmethod neuron-activation ((my-neuron neuron) layer-input)

(setf (output-vector my-neuron)

(list (sigmoid (my-summation (weight-vector my-neuron)

layer-input)))

))

INITIALIZE NEURON

Takes an input vector and weight vector and sets the data members

of the neuron. If a nil weight vector is passed in, random weights

are assigned.

(defmethod initialize-neuron ((my-neuron neuron) input-length weight-vectorl)

(if (null weight-vectorl)

(setf(weight-vector my-neuron) (make_random_weights input-length 2.0))

(setf(weight-vector my-neuron) weight-vectorl))

)

66

SUMMATION OF A VECTOR

this does summation on a vector

> (summation vector)

> (summation '(2.0 3.0 2.6))

(defun my-summation (vectorl vector2)

(apply'+ (mapcar #'* vectorl vector2)))

CREATE RANDOM WEIGHTS

makes a weight list of n elements long

of random weights +/- of rsw

> (make_random_weights 3 2.0)

(0.673233 -1.875556 1.333498)

(setf rsw 2.0);;or set it globally to a value

(defun listof (n elt)

(do* ((i 1 (+ i 1))

(weightl (cons elt ()) (cons elt weightl))

)

((> i n) weightl)))

67

Make random weights

(defun make_random_weights (n rsw)

(mapcar #'-

(list_ofnrsw)

(mapcar #'random (list_of n (* rsw 2)))))

LOGISTIC ACTIVATION FUNCTION

this provides a standard activation

function for a neural net--the logistic

sigmoid function

f(x) = 1 / (1 + e (-x))

(defun sigmoid (x)

(/l(+l(exp(-0x)))))

68

APPENDIX B: SOURCE CODE (LAYER CLASS)

layer class

Jeff May

21 March 97

contains layer class

Copyright © 1997 Jeff May

Franz Common Lisp

Creates a layer class with a node-value, input-value, number and slot values inherited from
neuron class. Number is the number of neurons in the layer. Node-value is a list containing
the neurons.

(defclass layer (neuron)

((node-value :accessor node-list

rinitarg :node-value

:initform '((make-instance 'neuron)))

(input-value : accessor input-vector

:initarg :input-value

:initform'())

(number : accessor number-value

:initarg :number

:initform 1)))

69

;INITIALIZE LAYER

initializes the slot values of layer class.

(defmethod initialize-layer ((my-layer layer) layer-params)

(setf(number-value my-layer) (first layer-params))

(setf(input-vector my-layer) (second layer-params))

(setf(weight-vector my-layer) (third layer-params))

(setf(node-list my-layer) (build-layer (first layer-params)))

(initialize-node-list my-layer layer-params)

)

INITIALIZE NODE LIST

Initializes the neurons in the node list.

(defmethod initialize-node-list ((my-layer layer) layer-params)

(do*((iO(+il))

(neuronl (first (node-list my-layer)) (nth i (node-list my-layer)))

(weightl (first (third layer-params))

(if (null (third layer-params))

(first (third layer-params))

(nth i (third layer-params))))

)

((> i (- (length (node-list my-layer)) 1)))

(initialize-neuron neuronl (length (input-vector my-layer)) weightl)))

70

;;BUILD LAYER

;;Creates the number of neurons need for the layer

j,——-—

(defun build-layer (number-neurons)

(do* ((i 1 (+ i 1))

(neuron-list (cons (make-instance 'neuron) ())

(cons (make-instance 'neuron) neuron-list)))

((> i (- number-neurons 1)) (reverse neuron-list))))

;;ACTIVATE LAYER

;;Sets the weight-value slot by activating the layer

(defmethod activate-layer ((my-layer layer))

(setf(weight-vector my-layer) (set-weights (node-list my-layer)))

(setf(output-vector my-layer) (activate-layer-list my-layer))

)

;ACTIVATE LAYER LIST

; Activates the neurons in the layer by calling neuron-activation

(defmethod activate-layer-list ((my-layer layer))

(do* ((i 0 (+ i 1))

(layerl (cons (first (neuron-activation

(first (node-list my-layer)) (input-vector my-layer))) ())

71

(cons (first (neuron-activation (nth i (node-list my-layer))

(input-vector my-layer))) layer 1))

)

((> i (-(length (node-list my-layer)) 2)) (reverse layer 1))

))

;SET WEIGHTS

;If weights are sent in as parameters then is function is called instead of random weights.

(defun set-weights (layer-list)

(if (null layer-list)

0
(cons (weight-vector (car layer-list))

(set-weights (cdr layer-list)))))

72

APPENDIX C: SOURCE CODE (NETWORK CLASS)

;;network.lspFranz Common Lisp

;; Jeff May

;;21 March 97

;;Contains network class

;; Copyright © 1997 Jeff May

;;Creates a network class which is an instance of a layer class.

(defclass network (layer)

((nodes-layer-value accessor nodes-per-layer

•.initarg :nodes-layer-value

:initform '(I))))

;;INITIALIZE NETWORK

;;initializes the slot values of network class based on the parameters passed in.

(defmethod initialize-network ((my-network network) network-params)

(setf(input-vector my-network) (second (first network-params)))

(setf(number-value my-network) (length network-params))

(setf(nodes-per-layer my-network) (list (first (first network-params))

(first (second network-params))))

(setf(node-list my-network) (build-network

73

(length network-params)))

(initialize-network-layers my-network network-params)

)

INITIALIZE NETWORK LAYERS

Initializes each layer in the network by calling initialize-layer

(defmethod initialize-network-layers ((my-network network) network-params)

(do*((iO(+il))

(layerl (first (node-list my-network)) (nth i (node-list

my-network)))

)

((> i (- (length (node-list my-network)) 1)))

(initialize-layer layerl (nth i network-params)))

)

BUILD NETWORK

Creates the layers in the network

(defun build-network (number-layers)

(do*((il(+il))

(layer-list (cons (make-instance layer) 0)

(cons (make-instance 'layer) layer-list)))

((> i (- number-layers 1)) (reverse layer-list))))

74

;;ACTIVATE

;;sets the output-value of the network to the value of the last layer output-value by calling
; ;activate-network

(defmethod activate ((my-network network) my-network-input)

(set-network-input my-network my-network-input)

(activate-network my-network)

(setf(output-vector my-network)

(output-vector (first (last (node-list my-network)))))

)

;;SET NETWORK INPUT

;;Sets network input vector

(defmethod set-network-input ((my-network network) network-input)

(setf(input-vector my-network) network-input)

(setf(input-vector (first (node-list my-network))) network-input)

)

? ?~ ——————————

;;ACTIVATE NETWORK

;; Activates network by sending one layer at a time to initialize-layer

(defmethod activate-network ((my-network network))

(do* ((i 0 (+ i 1))

75

(output-layer (activate-layer (first (node-list my-network)))

(if (nth i (node-list my-network))

(activate-layer (nth i (node-list my-network)))))

)

((> i (- (length (node-list my-network)) 1)))

(if (nth (+ i 1) (node-list my-network))

(setf(input-vector (nth (+ i 1) (node-list my-network)))

output-layer))))

76

APPENDIX D: SOURCE CODE (BACK PROPAGATION)

;;backprop.lsp Franz Common Lisp

;;JeffMay

;;21 Mar 97

;;Contains the functions that run the back propagation algorithm

;; Copyright © 1997 Jeff May

;TRAIN

;Repeat process until total error is within acceptable level

(defun train (my-network input-vector acceptable-error)

(do* ((error (train-set my-network input-vector)

(train-set my-network input-vector))

)

((< error acceptable-error) 'done)

(format t "Total Error ~A~% " error)))

;;TRAIN-SET

;;Total Error = Total Error + Total Output Error (current-error)

(defun train-set (my-network input-vector)

(do* ((i 0 (+ i 1))

77

(current-error (compute-error

(train-network my-network (first (first input-vector))

(second (first input-vector))))

(if (nth i input-vector)

(compute-error (train-network my-network

(first (nth i input-vector))

(second (nth i input-vector)))

)))

(total-error current-error

(if (nth i input-vector)

(+ total-error current-error)))

)

((> i (- (length input-vector) 2))total-error)

))

COMPUTE ERROR

Total Output Error = sum(output errors)

(defun compute-error (error-vector)

(let* (

(vector (mapcar #'abs error-vector))

(sum (mapcar #'+ vector))

) (first sum))

)

78

TRAIN NETWORK

(defmethod train-network ((my-network network) input-list expected-output)

(activate my-network input-list)

(let* ((output-error-vector (calc-output-error expected-output

(output-vector my-network)))

(hidden-layer-error-vector

(hidden-layer-errors output-error-vector (reverse (node-list

my-network))))

)

(calculate-weight-change (reverse (node-list my-network))

(cons output-error-vector

hidden-layer-error-vector))

(set-neuron-weights (node-list my-network))

(output-vector (first (last (node-list my-network))))

output-error-vector

))

CALC-OUTPUT-ERROR

Output Error = Expected - Actual

(defun calc-output-error (exp-output calc-output)

(mapcar #'- exp-output calc-output))

79

HIDDEN LAYER ERRORS

(defun hidden-layer-errors (error-vector layer-list)

(do* ((i 0 (+ i 1))

(new-error-vector

(cons (calc-final-error

(calc-inc-errors error-vector

(conv-weight-list (weight-vector (first layer-list)))

)

(first layer-list))

0)
(cons (calc-final-error

(calc-inc-errors error-vector

(conv-weight-list (weight-vector (nth i layer-list)))

)

(nth i layer-list))

new-error-vector)

)

)

((> i (- (length layer-list) 2)) (reverse new-error-vector))))

80

CALC-FINAL-ERROR

(definethod calc-fmal-error (incoming-error-vector layer)

(let ((vectorl (input-vector layer)))

(mapcar #'calculate-final-error vectorl incoming-error-vector)

)

)

; CALCULATE FINAL ERROR

;FinErr = IncErr * Derivative_of_activationJunction

, *
}"" — ~-—

(defun calculate-final-error (node-value incoming-error)

(* incoming-error node-value (-1 node-value)))

 *
?~ ——~— —

; Calculate Incoming Errors

;IncErr = sum(OutErr * weights)

(defun calc-inc-errors (output-error-vector output-weights)

(do* ((i 0 (+ i 1))

(inc-error (cons (my-summation output-error-vector

(first output-weights))

0)
(cons (my-summation output-error-vector

(nth i output-weights))

81

inc-error))

)

((> i (- (length output-weights) 2)) (reverse inc-error)))

CACULATE WEIGHT CHANGE

(defun calculate-weight-change (layer-list error-vector-list)

(if (first layer-list)

(setf(weight-vector (first layer-list))

(calc-wt-chg (first layer-list) (first error-vector-list)

(weight-vector (first layer-list)))

)

)

(if (first layer-list)

(calculate-weight-change (cdr layer-list) (cdr error-vector-list))

)

)

CALC-WT-CHG

(defun calc-wt-chg (my-layer error-vector weight-vector-list)

(do* ((i 0(+ i 1))

(weightl (cons

(change-weight

(calculate-delta-weight *step*

82

(first error-vector) (input-vector my-layer))

(first weight-vector-list))

0)
(cons (change-weight

(calculate-delta-weight *step*

(nth i error-vector) (input-vector my-layer))

(nth i weight-vector-list))

weight 1))

)

((> i (- (length error-vector) 2)) (reverse weightl))

))

;; CALCULATE DELTA WEIGHT

;; delta_weight = b * OutErr * InputValues

 *

(defun calculate-delta-weight (beta-shift error arc-weight)

(do* ((i 0 (+ i 1))

(delta-weight (cons (* beta-shift error (first arc-weight)) ())

(cons (* beta-shift error (nth i arc-weight)) delta-weight))

)

((> i (- (length arc-weight) 2)) (reverse delta-weight))

))

83

;; CHANGE WEIGHT

;; weight = weight + deltajweight

.. *

(defun change-weight (vector 1 vector2)

(mapcar #'+ vector 1 vector2))

;SET NEURON WEIGHTS

(defun set-neuron-weights (layer-list)

(do*((kO(+kl)))

((> k (- (length layer-list) 1)))

(do*((iO(+il)))

((> i (- (length (node-list (nth k layer-list))) 1)))

(setf(weight-vector (nth i (node-list (nth k layer-list))))

(nth i (weight-vector (nth k layer-list))))

)))

; CONVERT WEIGHTIEST TO BACKPROP_WEIGHT LIST

; conv_weight_list

; takes (1 2 3) (4 5 6) and makes (1 4) (2 5) (3 6)

(defun conv-weight-list (x)

(apply 'mapcar #'list x))

84

APPENDIX E: SOURCE CODE (AMMO-RECOGNITION)

? ?~ ————- -

;;ammo-rec.lsp

;; Jeff May

;;21Mar97

;;Contains the user interface functions

;; Copyright © 1997 Jeff May

;;AMMO-RECOGNITION sets the learning rate, called step, to .2. Output-type-list establishes
;;what the order of the output. Ammo-parameters is a list that contains the number of neurons
;;in the first layer, length 81mm, weight list, (), initial input values, 81mm, the number of
;;neurons in the nest layer, length output-type-list, initial input values for the second layer,
;;81mm and weight vector for the second layer neurons, (). Setf ammo-network creates an
;;network object called ammo-network.

(defun ammo-recognition ()

(defparameter *step* .2)

(setf output-type-list'("81mm" "60mm" "105mm" "105heat" "3.5in"))

(format t "In build-my-input ~%")

(build-my-input)

(setf ammo-parameters (list(list (length 81mm) 81mm ())

(list (length output-type-list) 81mm ())))

(format t "In make-instance ~%")

(setf ammo-network (make-instance 'network))

(format t "In initialize ~%")

(initialize-network ammo-network ammo-parameters)

85

(format t "In train ~%")

(train ammo-network (build-ammo-input) '.2)

(output-file "data/ammo-wgts.dat")

(save-weights ammo-network)

)

LOAD-AMMO-NET

Loads a pre-existing network object and calls it ammo-network.

(defun load-ammo-net (wgts)

(setf output-type-list '("8lmm" "60mm" "105mm" "3.5in" "105heat"))

(build-my-input)

(setf parameters (list (list (length t3-5in) t3-5in (first wgts))

(list (length output-type-list) t3-5in (second wgts))))

(setf ammo-network (make-instance 'network))

(initialize-network ammo-network parameters)

)

RETRAIN-AMMO-NET

Allows for a method of retraining a network with the existing weights and a different learning
rate as well as a different error

(defun retrain-ammo-net (wgts)

(defparameter *step* .1)

(setf output-type-list'("81mm" "60mm" "105mm" "3.5in" "105heat"))

86

(build-my-input)

(setf parameters (list (list (length t3-5in) t3-5in (first wgts))

(list (length output-type-list) t3-5in (second wgts))))

(setf ammo-network (make-instance 'network))

(initialize-network ammo-network parameters)

(train ammo-network (build-ammo-input) M)

(output-file "daWammo-wgts.dat")

(save-weights ammo-network)

)

AMMO-NET

Activates ammo-network, calls determine-output and prints what piece of ammo the net has
determined the input is and with what value. A value of 1.0 is the max. This function sends
the test data through the network.

(defun ammo-net()

(format t "input: 60mm output: ~A~% "

(determine-output(activate ammo-network tst60mm)))

(format t "input: 81mm output: ~A~% "

(determine-output(activate ammo-network tst81mm)))

(format t "input: 105mm arty output: ~A~% "

(determine-output(activate ammo-network tstl05mm)))

(format t "input: 3.5in rocket output: ~A~% "

(determine-output(activate ammo-network tst3-5in)))

(format t "input: 105mm heat output: ~A~% "

(determine-output(activate ammo-network tstheat))))

87

BUILD-MY-INPUT

Creates the variables that contain the input data.

(defun build-my-input 0

(setf 60mm (build-input "../data/60mma.dat"))

(setf 81mm (build-input "../data/81mm.dat"))

(setf 105mma (build-input "../data/105mmarty.dat"))

(setf 3-5in (build-input "../data/3-5in.dat"))

(setf 105heat (build-input "../data/105-heat.dat"))

(setf t3-5in (build-input "../data/t3-5in.dat"))

(setf t8 lmm (build-input "../data/t81mm.dat"))

(setf tl05heat (build-input "../data/tl05heat.dat"))

(setf t60mm (build-input "../data/t60mm.dat"))

(setf tl05mm (build-input "../data/tl05mm.dat"))

(setf tst60mm (build-input "../data/tst60mm.dat"))

(setf tstl05mm (build-input ,,../data/tstl05mm.dat"))

(setf tst3-5in (build-input "../data/tst3-5in.dat"))

(setf tstheat (build-input "../data/tstheat.dat"))

(setf tst81mm (build-input "../data/tst81mm.dat"))

)

88

;BUILD-AMMO-INPUT

;Builds the training sets with the expected output attached to each ammo variable

(defun build-ammo-input 0

(list

(list81mm'(100 0 0))

(list 60mm '(0 10 0 0))

(list 105mma*(00 100))

(listl05heat'(0 00 10))

(list 3-5in'(0000 1))

(listt81mm'(10 0 00))

(listt60mm'(0 100 0))

(listtl05mm'(00 100))

(listtl05heat'(000 10))

(listt3-5in'(0 00 0 1))))

3 —————— ——-—

;DETERMINE -OUTPUT

;Takes the max number of the output list and prints the corresponding string from the output-
;type-list.

(defun determine-output (output-list)

(let ((answer (eval (append '(max) output-list))))

(format t "~A~% " answer)

(nth(position answer output-list) output-type-list)))

89

ANN

Compiles and loads all of the files needed to run the network

(defun ann ()

(compile-file "neuron")

(load "neuron")

(compile-file "layer")

(load "layer")

(compile-file "network")

(load "network")

(compile-file "backprop")

(load "backprop")

(compile-file "ammo-rec")

(load "ammo-rec")

(compile-file "readnet")

(load "readnet")

(compile-file "out-data")

(load "out-data"))

90

OUTPUT-FILE

Creates the output file for the weights of the network

(defun output-file (file-name)

(setf output-path (make-pathname :name file-name))

(setf out-str (open output-path direction -.output

:if-exists supersede))

)

SAVE-WEIGHTS

Writes the weights to the above file.

(defmethod save-weights ((my-network network))

(do* ((i 0 (+ i 1))

(weightl (weight-vector (first (node-list my-network)))

(list (weight-vector (nth i (node-list my-network))) weightl))

)

((> i (- (length (node-list my-network)) 2))

(format out-str "~A~%" (reverse weightl)))

)

(close out-str))

91

BUILD-INPUT

Opens the input file and reads the data in.

(defun build-input (data-path)

(setf path (make-pathname :name data-path))

(setf str (open path rdirection :input

:if-exists supersede))

(do* ((str-line (read-line str nil 'eof)

(read-line str nil 'eof))

(ammo-list (list (read-from-string str-line))

(if (eql str-line'eof)

ammo-list

(cons (read-from-string str-line) ammo-list)))

)

((eql str-line 'eof) (close str) (reverse ammo-list))

)

92

BUILD-WEIGHTS

Opens and reads in the weight values

(defun build-weights (data-path)

(setf weight-path (make-pathname :name data-path))

(setf weight-str (open weight-path direction :input

:if-exists :supersede))

(setf my-weightsl (read-line weight-str nil))

(close weight-str)

)

93

94

APPENDIX F: INPUT DATA

4.2 5.1 6.0 7.0 8.4 10.3 12.4 14.9 17.5 21.0 24.8 28.9 30.9 32.6 32.9 31.6 28.8 25.0 21.4 17.5 14.8 11.8 9.8 7.6 6.6 5.2 4.8 4.1 3.9 2.8 2.2

4.2 5.3 6.3 7.4 8.9 11.0 13.1 15.9 18.9 23.0 27.3 31.6 33.7 35.3 35.2 33.7 31.1 26.8 22.6 18.2 15.2 12.1 10.0 7.9 6.7 5.3 4.9 4.1 3.9 2.8 2.2

4.3 5.5 6.5 7.6 9.1 11.1 13.5 16.5 19.7 24.0 28.4 32.6 34.7 35.9 35.9 34.3 31.5 27.0 22.0 18.0 14.9 12.0 9.8 7.9 6.7 5.3 4.8 4.1 3.9 2.7 2.2

4.3 5.3 6.5 7.4 9.0 10.9 13.4 16.2 19.5 23.4 27.9 32.0 34.1 34.7 34.6 32.5 28.4 24.0 20.0 16.0 13.7 11.1 9.1 7.4 6.5 5.2 4.6 3.9 3.6 2.5 2.2

4.2 5.3 6.2 7.3 8.8 10.4 12.8 15.4 18.3 21.7 25.7 28.7 30.6 29.9 29.6 26.7 21.9 17.8 15.4 12.7 10.8 9.3 8.0 6.6 5.9 4.8 4.3 3.8 3.5 2.5 2.2

4.2 5.0 5.9 6.9 8.2 9.5 11.4 13.5 15.8 18.1 20.7 21.9 22.7 19.7 19.0 13.5 11.5 9.4 9.0 8.2 8.0 7.2 6.5 5.7 5.0 4.3 4 3.5 3.3 2.3 1.9

3.9 4.8 5.5 6.2 7.3 8.3 9.6 11.3 12.4 13.2 14.5 12.8 11.8 6.5 6.0 0.4 -0.5 -0.7 2.2 3.1 4.1 4.5 4.9 4.3 4.3 3.9 3.6 3.3 3.1 2.1 1.9

3.8 4.3 4.9 5.5 6.5 6.9 7.7 8.0 8.3 7.3 6.7 0.9 -0.7 -8.6 -8.3 -14.7-12.1 -9.7 -12.9 -2.9 0.5 1.4 2.8 3.1 3.3 3.2 3.2 2.9 2.8 1.9 1.9

3.5 3.9 4.3 4.7 5.2 5.2 5.7 4.8 3.8 1.1 -1.9-10.2-14.6-23.8-24.7-28.2 -23-19.4-12.4-8.3-3.5 -1.4 0.8 1.5 2.4 3.5 2.6 2.5 2.6 2.3 1.9

3.2 3.5 3.6 3.9 4.1 3.5 3.3 1.2-0.5-5.2-11.4-21.3-30.4-35.4-36 -36-32.8-27.8-19.6 -13-7.2-4.2-1.1 0.4 1.4 1.8 2.2 2.2 2.4 2.1 1.8

2.9 3.1 3.2 3.2 3.1 2.1 1.5-1.6-4.2-10.7-17.9-29.6 -36 -36 -36 -36 -36 -34 -25.8-17.9 -11-6.6-2.9-0.9 0.5 1.2 1.6 1.9 2.1 1.9 1.6

2.6 2.6 2.6 2.5 2.1 1.0 0.4-3.3-6.2-13.8-20.7-33.9 -36 -36 -36 -36 -36 -36 -30-20.9-13.9-8.3-4.3-1.9-0.5 0.8 1.4 1.6 1.9 1.9 1.6

2.5 2.4 2.2 1.9 1.4 0.4 -1.0-4.6-7.7-15.9-23.8-35.6 -36 -36 -36 -36 -36 -36 -22-22.3-15.2-9.3-5.2-2.5-0.7 0.4 1.1 1.5 1.8 1.8 1.5

2.2 2.1 1.9 1.5 0.9-0.5-1.6-5.5-8.7-16.4-24.2 -35 -36 -36 -36 -36 -36 -36-32.2-22.3-15.5-9.3-5.5-2.8-0.9 0.4 0.9 1.2 1.6 1.5 1.3

2.1 1.9 1.8 1.4 0.8-0.6-1.8-5.3-8.0-15.1-21.9 -32 -36 -36 -36 -36 -36-35.6-29.8-20.3-14.7 -9-5.3-2.8-0.9 0.4 0.8 1.2 1.5 1.5 1.3

2.0 1.8 1.6 1.2 0.7-0.6-1.6-4.4-7.0-12.4-17.2-27.1-32.9 -36 -36 -36 -36-32.6-24.8-17.5-13.1-8.2-4.9-2.6-0.9 0.4 0.7 2.1 1.5 1.5 1.3

1.9 1.6 1.5 1.2 0.7-0.5-1.4-3.6-5.7-9.8-13.8 -21-24.8-31.2-32.2-33.3-30.1-24.8-19.3-14.4 -10-6.6-3.9-2.1-0.7 0.4 0.8 1.1 1.4 1.4 1.3

1.8 1.6 1.5 1.1 0.7-0.5-1.1-2.8-4.5-7.3-10.2-15.4-17.3-21.9-23.0-24.8-20.5-16.8-13.9 -10-7.6-4.9-3.1-1.5-0.5 0.4 0.8 1.1 1.4 1.4 1.3

1.6 1.5 1.1 0.8 0.4-0.7-1.8-3.1 -5-7.3-10.1-12.4-15.1-16.1 -17.0-15.1-12.5-10.6-7.9-5.9-3.9-2.2-1.1-0.5 0.4 0.8 1.1 1.4 1.4 1.3

1.6 1.5 1.4 1.1 0.8 0.4 -0.5 -1.5 -2.4 -3.9 -5.5 -7.7 -9.7 -11.7 -12.7 -13.0 -12 -10 -8 -6 -4.3 -2.8 -1.6 -0.7 0.4 0.5 0.9 1.1 1.4 1.4 1.3

1.6 1.5 1.2 1.1 0.8 0.4 -0.5 -1.2 -2.1 -3.5 -4.9 -7.3 -9 -11.4 -12.4 -12.5 -11.5 -9.8 -7.6 -5.5 -3.9 -2.6 -1.3 -0.7 0.4 0.5 0.9 1.1 1.3 1.5 1.2

1.5 1.4 1.2 0.9 0.7 0.4-0.5-1.4-2.2-3.9-5.3-8.4-10.3-13.4-14.5 -14.9 -13.5-11.8-8.9 -6-4.3-2.9-1.5-0.7-0.4 0.5 0.8 0.9 1.2 1.5 1.2

1.5 1.2 1.1 0.9 0.5-0.4-0.7-1.8-2.6-4.8-6.5-10.3-12.5-16.4-17.9-18.5-16.9-14.7-11.1-7.7-5.3-3.6-1.9-0.9-0.5 0.4 0.7 0.9 1.1 1.3 1.1

1.4 1.1 0.9 0.7 0.4-0.5-0.9-2.4-3.3-5.7-7.9-12.5-15.8-20.2-22.2 -23-20.7-18.1-13.7-9.8-6.9-4.6-2.8-1.4-0.7 0.4 0.6 0.8 1.1 1.2 1.1

1.2 1.1 0.9 0.5 0.4 -0.7 -1.4 -2.8 -4.1 -6.7 -9.4 -14.4-18.2 -23-25.7-26.5 -24.4 -21-16.1-11.8 -8.2 -5.6 -3.3 -1.9 -0.8 0.4 0.4 0.7 0.9 1.1 1.1

1.2 0.9 0.8 0.4 -0.5 -0.8 -1.6 -3.2 -4.8 -7.4-10.4-15.6-19.7 -25-27.8-28.8-26.7-23.1-17.9 -13 -9.3 -6.6 -3.4 -2.4 -1.1 -0.5 0.4 0.5 0.9 1.1 1.1

1.1 0.9 0.7 0.4-0.5-0.9-1.9-3.3 -5-7.9 -11-16.1-20.5-25.5-28.7-29.5-27.7-24.1-18.9-13.9 -10 -7-4.5-2.6-1.5-0.7-0.5 0.4 0.8 1.1 1.1

1.1 0.9 0.7 0.4 -0.5 -0.9 -2.1 -3.4 -5.2 -7.9 -11-15.5 -20-24.4-27.7-28.5-27.1-23.4-18.8 -14 -10 -7.3 -4.6 -2.9 -1.6 -0.7 -0.5 0.4 0.8 1.1 1.1

1.1 0.8 0.5 0.4 -0.5 -0.9 -2.1 -3.3 -5 -7.4-10.3-14.2 -18.5 -22-25.3 -26-24.8-21.4-17.3-13.4 -9.6 -6.9 -4.9 -2.9 -1.6 -0.8 -0.7 0.4 0.7 0.9 0.9

0.9 0.8 0.5 0.4 -0.5 -0.9 -1.9 -3.1 -4.6 -6.7 -9.4-12.5 -16 -19.2-21.7 -22 -20.9-18.3-14.9-11.8 -8.4 -6.2 -4.3 -2.6 -1.6 -0.7 -0.7 0.4 0.7 0.9 0.9

0.9 0.8 0.5 0.4 -0.5 -0.8 -1.8 -2.6 -4.2 -5.9 -8.3-10.7-13.5-15.6-18.2-17.9-17.5-14.9-12.8 -10 -7.3 -5.5 -3.9 -2.4 -1.5 -0.7 -0.6 0.4 0.7 0.9 0.9

0.9 0.8 0.5 0.4 -0.5 -0.7 -1.5 -2.2 -3.5 -4.9 -6.7 -8.6-10.7 -14.4-14.1-13.8-13.7-11.8 -10.1 -8 -6.2 -4.5 -3.3 -2.1 -1.2 -0.6 -0.5 0.4 0.7 0.9 0.9

0.9 0.8 0.5 0.4 -0.4 -0.6 -1.1 -1.8 -2.8 -3.9 -5.3 -6.7 -8.2 -9.6 -10.7 -10.6-10.1 -9.1 -7.9 -6.5 -4.8 -3.6 -2.8 -1.5 -0.9 -0.5 -0.5 0.4 0.8 0.9 0.9

0.9 0.9 0.7 0.4 0.4 -0.5 -0.8 -1.3 -2.1 -2.9 -3.9 -4.9 -6 -7.2 -7.6 -7.6 -7.6 -6.7 -5.9 -4.6 -3.6 -2.8 -2.1 -1.1 -0.8 -0.5 -0.5 0.5 0.8 0.9 0.9

0.9 0.9 0.8 0.5 0.4 -0.5 -0.6 -0.8 -1.4 -2.1 -2.8 -3.6 -4.2 -5 -5.5 -5.3 -5.2 -4.6 -4.2 -3.2 -2.5 -1.9 -1.5 -0.7 -0.7 0.4 0.4 0.5 0.8 0.9 0.9

Training Set 1: 3-5in Rocket

95

1.5 1.6 1.8 2 2.1 2.4 2.6

1.6 1.8 1.9 2.1 2.4 2.6 2.9

1.8 1.9 2.1 2.4 2.6 3.1 3.3

1.9 2.1 2.3 2.5 2.8 3.3 3.8

1.9 2.1 2.5 2.8 3.2 3.6 4.2

1.9 2.2 2.6 2.9 3.3 3.9 4.6

2.1 2.4 2.6 3.1 3.5 4.2 5

2.1 2.5 2.8 3.2 3.8 4.5 5.5

2.1 2.5 2.8 3.2 3.8 4.6 5.6

2.1 2.5 2.8 3.2 3.8 4.5 5.6

2.1 2.4 2.6 3.1 3.5 4.3 5

1.9 2.3 2.5 2.8 3.3 3.9 4.5

1.9 2.2 2.4 2.6 2.8 3.2 3.6

1.8 2 2.1 2.2 2.4 2.5 2.6

1.6 1.8 1.9 1.9 1.8 1.8 1.6

1.5 1.6 1.6 1.6 1.4 1.1 0.4

1.4 1.4 1.4 1.3 0.9 0.4 -0.5

1.2 1.2 1.1 0.9 0.5 0.4 -0.9

1.2 1.1 0.9 0.9 .4 -0.5 -1.2

1.1 1.1 0.9 0.8 0.4 -0.5 -1.4

1.1 0.9 0.8 0.6 0.4 -0.5 -1.2

0.9 0.9 0.8 0.5 0.4 -0.5 -0.9

0.9 0.9 0.8 0.6 0.4 -0.5 -0.8

0.9 0.9 0.8 0.7 0.4 -0.4 -0.7

0.9 0.9 0.8 0.7 0.4 0.4 -0.5

0.9 0.9 0.8 0.8 0.5 0.4 0.4

0.9 0.9 0.9 0.8 0.7 0.4 0.4

0.9 0.9 0.9 0.8 0.7 0.4

1 0.9 0.9 0.8 0.7 0.7

1 0.9 0.9 0.8 0.8

0.9

1

0.9

0.9

0.9

0.9

0.9

0.9

1.1 1.1 0.9 1.1

1.1 1.1 1.1 1.1

1.1 1.1 1.1 1.1

2.8 3.2 3.3 3.5 3.8 3.9 4.1 4.1 3.9 3.9 3.8 3.6 3.3 2.9 2.6 2.5 2.2 2.1 1.9 1.8 1.6 1.5 1.5 1.4

3.2 3.6 3.9 4.1 4.5 4.8 4.8 4.8 4.9 4.6 4.3 4.2 3.9 3.3 3.1 2.8 2.5 2.2 2.1 1.9 1.6 1.6 1.5 1.5

3.8 4.3 4.6 4.9 5.5 5.9 5.9 6 6 5.6 5.3 4.9 4.5 3.9 3.5 3.2 2.8 2.5 2.2 2.1 1.8 1.6 1.6 1.5

4.3 4.9 5.5 5.7 6.7 7.2 7.4 7.2 7.3 6.7 6.5 5.7 5.3 4.5 3.9 3.5 3.1 2.8 2.4 2.2 1.9 1.8 1.6 1.5

4.9 5.7 6.3 6.9 8.2 8.3 9.1 9 9 8.4 7.7 6.9 6.2 5.2 4.5 3.8 3.3 2.9 2.6 2.2 2.1 1.8 1.6 1.5

5.5 6.7 7.4 8.4 10 10.8 11.4 11.3 11.3 10.3 9.4 7.9 7.2 5.7 4.9 4.2 3.5 3.1 2.6 2.4 2.1 1.9 1.8 1.6

6 7.6 8.7 10.112.113 13.9 13.813.8 12.5 11.1 9.4 8 6.7 5.5 4.6 3.8 3.2 2.8 2.5 2.2 1.9 1.8 1.6

6.6 8.4 9.7 11.4 14.115.116.4 16.215.9 14.4 12.7 10.3 8.9 7.2 5.7 4.9 3.9 3.3 2.9 2.6 2.2 2.1 1.8 1.6

6.7 8.9 10.6 12.5 15.2 16.8 18.2 18.2 17.3 15.8 13.5 11.19.3 7.9 6 4.9 4.1 3.5 2.9 2.6 2.4 2.1 1.9 1.6

6.7 8.9 10.6 12.5 14.8 16.617.5 17.9 16.4 15.5 13 10.8 9 7.7 5.9 4.9 3.9 3.3 2.9 2.5 2.2 2.1 1.8 1.6

6.2 7.9 9.1 10.7 12 13 12.7 13.2 11.7 12.5 10.6 9.4 8 6.7 5.5 4.6 3.8 3.3 2.8 2.5 2.2 2.1 1.8 1.6

5.3 6.3 6.9 7.7 6.9 6.7 4.5 2.9 3.3 6.5 5.6 6.6 6 5.5 4.6 3.9 3.5 3.1 2.6 2.4 2.2 1.9 1.8 1.6

3.9 4.5 3.9 3.6 -0.7 -2.4 -7.2 -8.9 -8 -2.4 -0.7 2.4 2.9 3.6 3.5 3.3 2.9 2.6 2.4 2.2 2 1.8 1.6 1.6

2.2 1.5 0.7-1.2-7.7-12.8-19.9-21.4-20.2-12.7-7.3-1.9 0.4 1.6 2.1 2.4 2.4 2.2 2.1 2.1 1.9 1.8 1.6 1.5

0.8-0.9-3.3-6.2-14.8-20.6-29.2-30.9-29.5-213-13.9-8-3.3-0.7 0.5 1.1 1.6 1.8 1.8 1.8 1.6 1.6 1.6 1.5

-0.7-3.1-6.7 -10-19.9-27-34-35.7-34.5-27.4-18.8-11.7-6.2-2.6-0.7 0.4 0.9 1.2 1.5 1.5 1.5 1.5 1.5 1.4

-1.8-4.6-8.5-12.4-20.8-30.5-36-36-36-30.6-21.4-14.1-8-4.3-1.6-0.7 0.5 0.9 1.2 1.2 1.4 1.4 1.4 1.4

-2.4-5.6 -10-14.3-22.6-31.2-35.7-36-35.6-30.9-22.2-15.1-9.3-5-2.4-1.10.4 0.5 0.9 1.11.2 1.2 1.4 1.2

-2.6-5.5 -10-14.5-20-28.8-33.6-35.4-33.9-30.4-21.9-15.1-9.8-5.5-3.1-1.6-0.5 0.4 0.7 0.9 1.1 1.2 1.2 1.2

-2.6-5.2-9.1-13-17.5-24.3-29.2-32-29.5-26.1-19-13.4-9.1-5.5-3.1-1.8-0.5 0.4 0.5 0.8 0.9 1.1 1.2 1.2

-2.4 -4.5 -7.2-10.8-14.5-18.8-22.4-26-22.7-21.2-15.8-11.3 -7.9-4.9-2.8-1.6-0.5 0.4 0.5 0.8 0.9 0.9 1.1 1.2

-2.1 -3.9 -6.1 -8.4-10.7-13.9-16.6-17.9-16.4-15.8-12.3 -8.9 -6.5-4.2-2.4-1.5-0.5 0.4 0.5 0.7 0.8 0.9 1.1 1.1

-1.5 -2.9 -4.6 -6.5 -7.9 -9.8-11.7-12.8-11.5 -11 -8.9-6.7 -5 -3.1-1.8 -1.1-0.5 0.4 0.5 0.7 0.8 0.9 1.1 1.1

-1.1 -2.1 -3.3 -4.3 -5.3 -6.7 -7.9 -8 -7.7 -7.4 -6.5 -4.8 -3.8 -2.2-1.2-0.8 -0.4 0.4 0.5 0.7 0.8 0.9 1.1 1.1

-0.7 -1.4 -2.2 -3.1 -3.8 -4.5 -4.9 -5.2-4.9-4.9-4.2-3.3 -2.4 -1.5 -0.8 -0.5 0.4 0.4 0.5 0.7 0.8 0.9 1.1 1.1

-0.5 -0.8 -1.4 -1.9 -2.2 -2.9 -3.2 -3.5-3.2-3.2-2.5-1.9 -1.4 -0.9 -0.5 -0.5 0.4 0.4 0.7 0.8 0.8 0.9 1.1 1.1

-0.4 -0.5 -0.7 -1.1 -1.4 -1.8 -1.9 -1.9 -1.9 -1.9-1.6-1.2-0.8-0.5 -0.4 0.4 0.4 0.5 0.8 0.8 0.9 0.9 1.1 1.1

0.4 0.4 -0.5 -0.5 -0.7 -0.9 -0.9 -1.1 -0.9 -0. -0.7 -0.7 -5 -0.4 0.4 0.4 0.5 0.7 0.8 0.9 0.9 0.9 1.1 1.1

0.4 0.4 0.4 -0.4 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5-0.5 0.4 0.4 0.4 0.5 0.7 0.8 0.8 0.4 0.9 0.9 1.1 1.1

0.7 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.7 0.7 0.8 0.9 0.9 0.9 0.9 1.1 1.1 1.1

0.8 0.7 0.7 0.5 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.7 0.8 0.8 0.8 0.8 0.9 0.9 0.9 0.9 1.1 1.1 1.1

0.9 0.8 0.8 0.8 0.8 0.5 0.7 0.5 0.7 0.7 0.7 0.8 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 1.1 1.1 1.1

0.9 0.9 0.9 0.9 0.8 0.8 0.8 0.8 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 1.1 1.1 1.1 1.1 1.1

0.9 0.9 1.1 0.9 0.9 0.9 0.9 0.9 0.9 1.1 0.9 0.9 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1-1 11 1-1 1-1

1.1 1.1 1.1 1.1 1.1 0.9 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1-2 1.1 1.1 1.1 1.1 1-1 11 1-1 1-1 11 '■'

Training Set 1: 60mm Mortar

96

3.3 3.8 4.3 4.9 5.6 6.5 7.4 8.7 10 11.5 12.8 13.9 15.2 16.2 15.6 15.9 14.2 13.2 12 10.7 9.7 8.2 7.2 6.2 5.5 4.6 4 3.6 3.2 2.9 2.6

3.5 4.1 4.6 5.5 6.2 7.2 8.4 9.7 11.7 13.2 15.1 16.9 19 19.5 19.3 19.5 17.9 16.2 14.5 13 11.3 9.4 8 6.9 6.2 5.2 4.3 3.9 3.5 3.1 2.8

3.8 4.3 5 5.9 6.7 7.9 9.6 11 13.7 15.8 18.6 21.2 23 24.3 24 24.3 21.7 19.6 17.2 14.9 13 10.8 8.9 7.4 6.7 5.5 4.8 4.2 3.6 3.2 2.9

3.9 4.6 5.3 6.5 7.3 8.7 10.4 12.4 15.2 17.9 21.4 24.1 27.1 28.5 28.4 28.4 25.5 22.6 19.7 16.8 14.7 11.8 9.7 8 7.2 5.9 5 4.3 3.8 3.3 3.1

4.2 4.8 5.6 6.7 7.9 9.4 11.3 13.5 16.9 19.6 23.7 27.8 30.8 31.8 32.5 31.6 28.9 25.5 22 18.5 16.1 12.8 10.4 8.6 7.6 6.2 5.2 4.5 3.9 3.5 3.1

4.2 4.9 5.7 6.9 8.2 9.8 11.8 14.1 17.8 21.2 25.4 29.5 32.6 34 34.3 33.6 30.9 27.7 23.8 19.7 16.9 13.9 11.1 9 7.9 6.5 5.5 4.6 4.1 3.5 3.2

4.3 5 5.9 7 8.4 10 12 14.4 18.1 21.4 25.8 29.8 32.8 34.2 34.5 33.5 31.2 28.2 24.3 20.2 17.1 14.4 11.3 9.3 8 6.6 5.5 4.8 4.1 3.6 3.2

4.3 5 5.9 7 8.3 9.8 12 14.1 17.5 20.7 24.3 28.1 30.6 31.9 31.8 30.5 29.4 27 23.4 19.7 16.8 14.1 11.1 9.1 8 6.6 5.6 4.8 4.1 3.6 3.2

4.2 4.9 5.7 6.7 8 9.4 11.3 13.2 16.1 18.6 21 23.4 24.7 26.4 24.8 24.7 23.6 23.1 20.3 17.9 15.6 12.8 10.8 8.9 7.9 6.5 5.5 4.6 4.1 3.6 3.2

4.2 4.8 5.5 6.5 7.6 8.9 10.4 11.7 13.9 15.8 16.2 15.9 15.2 14.8 13.5 14.5 16.2 17.6 17.1 15.2 13.9 11.5 9.8 8.3 7.4 6 5.3 4.5 3.9 3.5 3.2

3.9 4.5 5 6.6 7 7.9 8.9 10 10.8 11.5 11.7 8 2.6 1.5 -1.1 1.4 5.7 9.6 11.7 11.7 11.4 9.7 8.7 7.4 6.9 5.6 4.9 4.3 3.9 3.3 3.2

3.8 4.2 4.6 5.3 6.2 6.7 7.2 7.6 7.7 7 3.3 -1.2 -84-12.7-14.2 -12 -5.3 0.4 5.2 6.7 8.4 7.6 7.2 6.2 6 5 4.5 4.1 3.6 3.2 3.1

3.5 3.9 4.2 4.6 5 5.5 5.3 5.3 3.6 1.8-4.8-11.3-19.2 -26-29.8-26.1-16.8-7.9-1.5 7.9 3.9 5.5 5.6 5.2 5 4.5 4.2 3.6 3.3 3.2 2.9

3.2 3.3 3.6 3.9 4.1 3.8 3.5 2.6-0.4-2.6-10.4-18.9-31.9-35.9 -36-35.6-27.8-17.5-7.6-3.5 0.4 2.1 3.5 3.8 3.9 3.8 3.6 3.3 3.2 2.8 2.8

2.9 2.9 3.1 3.1 2.9 2.4 1.6-0.4-3.4-8.9-16.2-27.8 -36 -36 -36 -36-35.3-25.4-15.5-8.4-3.8-0.5 1.1 2.2 2.9 2.9 3.1 2.9 2.8 2.6 2.6

2.5 2.6 2.4 2.2 2.1 1.1 -0.4 -2.8 -7.6-12.9-23.4-33.2 -36 -36 -36 -36 -36 -32-21.2-13.4 -7.4 -2.8 -0.7 9 1.8 2.2 2.4 2.5 2.5 2.4 2.4

2.4 2.2 1.9 1.6 1.1 -0.4-1.9-4.8-10.7-15.2-27.7 -36 -36 -36 -36 -36 -36-35.6-25.7-16.9-10.7 -5-2.4-0.5 0.7 1.6 1.9 2.1 2.2 2.2 2.2

2.1 1.8 1.4 1.1 0.4-1.1 -3.8-6.7-12.4-19.2-30.9 -36 -36 -36 -36 -36 -36 -36-29.6-20.2-13.2 -7-3.8-1.2-0.5 0.9 1.4 1.8 1.9 2.1 2.1

1.8 1.5 1.1 1.4 -0.5 -1.9 -4.6 -8.3-13.8 -19-31.9 -36 -36 -36 -36 -36 -36 -36-32.5 -23-15.1 -8.7 -5.2 -2.4 -0.9 0.4 0.9 1.4 1.6 1.8 1.9

1.6 1.2 0.8 0.4-1.1-2.5 -5-8.6-13.9-20.5 -32 -36 -36 -36 -36 -36 -36 -36-32.9-23.6-16.8-9.4 -6-3.1-1.4-0.5 0.5 1.1 1.5 1.6 1.6

1.5 0.9 0.5 -0.5 -1.2 -2.9 -5.5 -8.9-14.2-20.2-31.1 -36 -36 -36 -36 -36 -36 -36-32.6-24.8-17.2 -10 -6.4 -3.5 -1.8 -0.5 0.4 0.9 1.2 1.5 1.6

1.2 0.9 0.4 -0.5 -1.4 -2.9 -5.5 -8.4-13.5-18.8-28.4 -36 -36 -36 -36 -36 -36 -36-30.9-22.7-16.2 -10 -6.4 -3.6 -2.1 -0.7 0.4 0.8 1.1 1.4 1.5

1.2 0.8 0.4 0.5-1.4-2.8 -5-7.9-12.4-16.9-25.1-33.3 -36 -36 -36 -36 -36-34.7-28.1-20.3-14.7-9.4 -6-3.5-2.1 -0.7 0.4 0.7 0.9 1.2 1.4

1.1 0.8 0.4 0.5 -1.2 -2.5 -4.3 -6.7-10.7-13.9-20.6-27.4-33.9 -36 -36 -36-34.6-29.5 -23-17.2-12.5 -8.3 -5.5 -3.2 -1.8 -0.7 0 0.7 0.9 1.2 1.4

1.1 0.8 0.4 0.5-1.1-2.2-3.8-5.7-8.9-11.7-16.2-21.6 -26-31.1-30.9-31.1-26.1-22.6-18.2-13.8-10.3-6.9-4.5-2.5-1.5-0.5 0.4 0.7 0.9 1.1 1.4

1.1 0.8 0.4 -0.4 -0.8 -1.6 -3.2 -4.6 -7.3 -9.1-12.5-16.4-20.3-22.3-24.3-21.4-19.9-17.6-13.9 -11 -8.4 -5.6 -3.8 -2.1 -1.2 -0.5 0.4 0.7 0.9 1.1 1.4

1.1 0.8 0.5 0.4 -0.7 -1.2 -2.4 -3.5 -5.3 -6.9 -9.3-12.3-14.2-15.8-17.2-15.4-14.5 -13-10.6 -8.2 -6.3 -4.3 -2.8 -1.5 -0.8 -0.5 0.4 0.8 0.9 1.2 1.2

1.2 0.9 0.7 0.4 -0.5 -0.7 -1.6 -2.5 -3.4 -4.9 -6.6 -8.6-10.4-11.1-11.5-10.6 -10 -9.4 -7.7 -6 -4.5 -3.1 -1.9 -0.9 -0.5 0.4 0.5 0.9 0.9 1.2 1.2

1.2 0.9 0.8 0.5 0.4 -0.5 -0.9 -1.6 -2.6 -3.2 -4.6 -5.9 -6.7 -7.7 -7.6 -7.2 -6.9 -6.5 -5.3 -4.2 -3.2 -2.1 -1.1 -0.7 -0.5 0.4 0.7 0.9 1.1 1.2 1.2

1.2 1.1 0.9 0.7 0.4 -0.4 -0.5 -0.9 -1.6 -2.2 -3.1 -3.9 -4.3 -5.3 -4.8 -4.9 -4.5 -4.1 -3.3 -2.8 -2.1 -1.4 -0.8 -0.5 0.4 0.4 0.8 0.9 1.1 1.2 1.4

1.2 1.1 1.1 0.8 0.5 0.4 -0.5 -0.5 -0.9 -1.2 -1.8 -2.5 -2.8 -3.2 -3.2 -3.1 -2.9 -2.6 -2.1 -1.6 -1.1 -0.7 -0.5 0.4 0.4 0.7 0.9 1.1 1.2 1.4 1.4

1.4 1.2 1.1 0.9 0.8 0.5 0.5 0.4 -0.5 -0.7 -0.9 -1.2 -1.6 -1.8 -1.8 -1.6 -1.6 -1.4 -1.1 -0.7 -0.7 -0.5 0.4 0.5 0.7 0.8 1.1 1.2 1.2 1.4 1.4

1.5 1.2 1.2 1.1 0.9 0.8 0.5 0.4 0.4 -0.5 -0.5 -0.7 -0.7 -0.8 -0.8 -0.8 -0.7 -0.7 -0.5 -0.5 -0.4 0.4 0.4 0.7 0.9 0.9 1.2 1.2 1.4 1.4 1.4

1.5 1.4 1.2 1.2 1.1 1.1 0.8 0.7 0.5 0.4 0.4 -0.4 -0.4 -0.5 -0.4 -0.4 -0.4 -0.4 0.4 0.4 0.4 0.5 0.8 0.9 1.1 1.1 1.2 1.2 1.4 1.4 1.4

1.5 1.4 1.4 1.2 1.2 1.2 1.1 0.9 0.8 0.7 0.7 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.4 0.5 0.8 0.9 1.1 1.1 1.1 1.4 1.4 1.4 1.4 1.4

Training Set 1: 81mm Mortar

97

2.4 2.6 2.6 2.8 2.8 3.1 3.2 3.2 3.3 3.2 3.2 3.1 3 2.9 2.8 2.7 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.5 2.5 2.4 2.5 2.2 2.2 2.1 2.1

2.6 2.8 2.8 3.1 3.1 3.2 3.3 3.3 3.5 3.3 3.3 3.2 3.1 3 2.8 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.5 2.5 2.4 2.4 2.2 2.1

2.8 3.1 3.1 3.3 3.4 3.6 3.8 3.8 3.8 3.7 3.6 3.2 3.1 2.9 2.6 2.6 2.6 2.5 2.6 2.6 2.6 2.8 2.8 2.8 2.8 2.6 2.6 2.5 2.4 2.2 2.2

3.1 3.3 3.3 3.6 3.8 3.9 4.1 4.1 4.1 3.9 3.7 3.2 2.9 2.6 2.2 2.2 2.2 2.2 2.4 2.5 2.6 2.8 2.8 2.9 2.9 2.8 2.8 2.6 2.6 2.4 2.4

3.3 3.5 3.6 3.9 4.2 4.3 4.5 4.3 4.3 4.1 3.8 3.1 2.5 1.9 1.4 1.5 1.4 1.6 1.9 2.4 2.6 2.8 2.9 3.1 3.1 3 2.9 2.8 2.6 2.6 2.4

3.6 3.9 3.9 4.3 4.5 4.8 4.9 4.9 4.7 4.3 3.6 2.6 1.6 0.7 0.4 0.4 0.4 0.7 1.2 2 2.4 2.8 3.1 3.2 3.2 3.2 3.1 2.9 2.8 2.6 2.6

3.9 4.2 4.3 4.9 5 5.3 5 5.3 5.1 4.5 3.5 2.1 0.4 -0.7 -2.2 -1.9 -1.6 -0.7 0.4 1.5 2.1 2.6 3.1 3.3 3.3 3.3 3.3 3.2 3.1 2.8 2.6

4.2 4.5 4.7 5.3 5.6 6 6.2 6 5.6 4.6 3.2 0.9 -1.5 -3.3 -5.5 -4.9 -4.5 -2.8 -0.9 0.9 1.8 2.6 3.2 3.3 3.6 3.5 3.5 3.3 3.2 3.1 2.8

4.5 4.9 5 5.9 6.3 6.7 7 6.7 6.3 5 3.1 -0.5 -4 -6.9 -9.4 -8.7 -7.4 -5.3 -2.4 0.4 1.5 2.6 3.3 3.6 3.9 3.9 3.8 3.5 3.4 3.2 3.1

4.9 5.3 5.6 6.5 7 7.6 7.9 7.9 7.3 5.7 3.2 -0.9 -6 -9.8-13.3-12.4-10.3 -7.3 -3.5 -0.5 1.4 2.6 3.5 3.9 4.1 4.2 4 3.8 3.6 3.3 3.2

5.2 5.7 6 7.1 7.9 8.5 9.1 9.1 8.7 7.1 4.1 -0.7 -7.3-12.3-16.2-15.5-13.1 -9.4 -4.6 -0.7 1.2 2.8 3.9 4.2 4.5 4.3 4.3 4.1 3.8 3.5 3.3

5.5 6.2 6.5 7.7 8.6 9.4 10.1 10.6 10.4 9 5.9 0.7 -6.6-13.1-16.8-17.1-14.2-10.3 -4.9 -0.7 1.6 3.2 4.3 4.6 4.9 4.8 4.5 4.3 4 3.8 3.3

5.6 6.6 6.8 8.3 9.3 10.3 11.4 12.1 12.5 11.4 8.7 3.8 -3.8-10.8-14.2-15.9-13.5-10.1 -4.5 -0.4 2.2 3.8 4.9 5.2 5.3 5 4.9 4.5 4.2 3.9 3.6

5.9 6.9 7.2 8.7 9.8 11.1 12.5 13.5 14.5 13.9 12.5 8.2 2.2 -5.3 -8.4-12.6-10.8 -8.3 -3.1 0.9 3.2 4.5 5.5 5.6 5.6 5.5 5.2 4.8 4.5 4.1 3.8

6.2 7 7.4 9 10.4 11.7 13.3 14.8 15.8 16.1 15.2 12.8 8.6 1.9 -1.1 -6.9 -6.9 -5 -1.2 2.2 4.2 5.3 6.2 6.2 6.2 5.7 5.5 5 4.6 4.2 3.9

6.2 7.2 7.6 9.2 10.6 12 13.5 15.1 16.2 16.8 16.6 15.2 12.4 8.7 4.3 -1.4 -2.8 -2.2 0.4 2.9 4.9 6.2 6.6 6.6 6.5 6 5.6 5.2 4.8 4.3 3.9

6.2 7.2 7.7 9.2 10.6 11.8 13.3 14.8 15.5 15.7 15.5 13.5 11.5 9.3 4.1 0.5 -1.5 -1.2 0.9 3.6 5.3 6.3 6.7 6.7 6.6 6.2 5.7 5.3 4.9 4.4 3.9

6.2 7.2 7.6 9.1 10.3 11.4 12.5 13.5 13.4 13 11.2 9.6 4.5 2.7 -5 -5.5 -5.7 -3.5 -0.7 2.8 4.8 6 6.6 6.7 6.6 6.3 5.7 5.3 4.9 4.5 4

6.2 7 7.4 8.9 9.8 10.7 11.5 11.8 11.1 9 6 0.4 -7.4-13.1-22.3-19.2-16.9 -9.8 -5 0.4 3.2 5.2 6 6.5 6.3 6.2 5.6 5.2 4.9 4.5 4

6 6.9 7.3 8.4 9.3 10 10.1 9.9 8.3 5.5-0.9-9.7-22.7-30.6 -36-33.2-28.8-19.8-10.9-3.1 1.1 3.9 5.2 5.7 6 5.9 5.5 5.2 4.8 4.3 3.9

5.9 6.6 7 7.9 8.6 9 8.9 8.1 5.6 1.5 -6.6-18.5-33.7 -36 -36 -36 -36-28.8-16.5 -6.9 -0.9 2.2 3.9 5.2 5.5 5.5 5.3 4.9 4.6 4.3 3.9

5.6 6.3 6.6 7.4 7.9 8.2 7.9 6.5 3.9 -1.2 -9.6-23.4 -36 -36 -36 -36 -36-33.5-20.2 -9.3 -2.6 1.1 3.2 4.3 4.8 5 4.9 4.6 4.3 4.2 3.8

5.5 6 6.3 6.9 7.2 7.3 6.9 5.3 2.6 -2.2-10.2-23.6 -36 -36 -36 -36 -36-33.6-20.5 -9.7 -3.3 0.4 2.4 3.6 4.2 4.5 4.5 4.3 4.2 3.9 3.6

5 5.6 5.9 6.3 6.6 6.6 5.9 4.5 1.9-2.4-9.3-20.9-34.5 -36 -36 -36-35.9-28.9-16.8-7.9-2.9-0.5 1.8 3.1 3.5 3.9 4 4.1 3.8 3.8 3.5

4.9 5.3 5.5 5.7 5.9 5.7 4.9 3.3 0.9 -3.1 -9.1 -19-31.3 -36 -36-35.2 -27-19.1 -9.7 -5.3 -2.1 -0.5 1.2 2.4 3 3.4 3.5 3.7 3.5 3.5 3.3

4.5 4.9 5 5.2 5.3 4.9 4.1 2.4-0.5-4.2 -10-19.2-29.9-35.2-35.7-30.6 -20-12.4-7.2-4.3-2.4-0.8 0.4 1.6 2.4 2.9 3.1 3.3 3.3 3.3 3.2

4.3 4.5 4.6 4.6 4.6 4.2 3.1 1.1 -1.6 -6.3-12.5 -22-32.6 -36 -36-33.9-24.6-14.5 -10 -6.2 -4.3 -2.1 -0.8 0.7 1.5 2.2 2.6 2.9 3.1 3.1 2.9

3.9 4.2 4.3 4.2 3.9 3.3 1.8 -0.5 -3.5 -8.9-16.1-27.2 -36 -36 -36 -36 -36-29.5-18.7-11.3 -8.2 -4.5 -2.2 -0.5 0.7 1.6 2.1 2.6 2.6 2.8 2.8

3.8 3.9 3.9 3.7 3.3 2.6 0.9-1.5-4.9-10.8-18.5-30.4 -36 -36 -36 -36 -36 -36-29.5-18.2-11.8-7.2 -4-1.5-0.4 1.1 1.6 2.2 2.4 2.6 2.6

3.5 3.5 3.5 3.2 2.8 1.9 0.4-2.4 -6-12.3-20.7-32.8 -36 -36 -36 -36 -36 -36-34.9-22.8-14.5 -9-4.9-2.1 -0.7 0.7 1.4 1.9 2.2 2.4 2.4

3.2 3.3 3.2 2.9 2.4 1.5-0.5-2.9-6.2-12.2-20.2 -32 -36 -36 -36 -36 -36 -36-35.6-25.3-15.9 -10-5.6-2.6-0.9 0.4 1.1 1.6 2.1 2.2 2.4

3.1 3.1 2.9 2.6 2.1 1.2-0.5-2.6-5.7-10.8-17.5-28.2 -36 -36 -36 -36 -36 -36 -33-24.1-15.2-9.8-5.6-2.8-0.9 0.4 0.9 1.6 1.9 2.1 2.2

2.8 2.8 2.8 2.4 1.9 1.1 -0.5 -2.4 -4.6 -8.9-14.1-22.2-30.2 -36 -36 -36 -36-35.6-27.2-20.2-12.8 -8.7 -4.9 -2.5 -0.9 0.4 0.9 1.5 1.8 1.9 2.1

2.6 2.6 2.6 2.3 1.9 1.1 -0.4-1.6-3.3-6.6-10.3-15.2-21.2-28.8-29.2-29.8-29.4 -27-19.6-15.1 -10 -7-4.1 -2.1 -0.7 0.4 0.9 1.4 1.8 1.9 2.1

2.6 2.5 2.5 2.2 1.8 1.2 0.4-0.9-2.2-4.3-7.3 -11-13.9-17.5-18.8-19.3-19.9-17.6-13.8 -11 -7.3 -5-2.9-1.4-0.5 0.5 1 1.5 1.7 1.9 2.1

Training Set 1: 105mm Artillery

98

2.6 2.8 3.1 3.3 3.6 4.1 4.3 4.9 5.2 5.6 5.9 6.2 6.7 7.2 7.2 7.3 7.4 7.4 7.2 6.9 6.6 6.2 5.7 5.5 4.9 4.5 4.1 3.8 3.3 3.2 2.9

2.8 3.1 3.3 3.8 3.9 4.5 4.8 5.3 5.7 6.3 6.7 7.3 7.9 8.3 8.4 8.6 8.6 8.6 8.3 8.2 7.7 7.3 6.7 6.2 5.5 4.9 4.5 4.2 3.8 3.3 3.1

2.9 3.2 3.5 4.1 4.3 4.9 5.2 5.9 6.5 7.2 7.7 8.4 9.1 9.6 9.8 10.7 10.6 10.3 9.8 9.8 9 8.7 7.7 7.2 6.2 5.6 5 4.5 4 3.6 3.3

3.2 3.3 3.8 4.3 4.5 5.3 5.6 6.6 7.2 7.9 8.6 9.7 10.3 11.1 11.7 12.4 11.8 12.3 11.4 11.3 10.6 9.8 8.4 8.2 6.9 6.2 5.5 4.9 4.3 3.9 3.5

3.3 3.6 4.1 4.6 4.9 5.7 6.2 7.2 7.7 8.9 9.4 11 11.5 12.8 13.2 13.9 13.9 14.2 13.5 13.5 11.8 11 9.6 9 7.6 6.7 5.9 5.2 4.6 4.2 3.8

3.3 3.8 4.2 4.9 5 6 6.5 7.6 8.3 9.6 10.1 11.7 12.7 14.5 15.1 16.2 15.9 16.5 15.5 15.2 13.7 12.4 10.7 9.8 8.4 7.3 6.3 5.6 4.9 4.3 4.1

3.4 3.9 4.3 4.9 5.3 6.2 6.7 7.9 8.7 10 10.7 12.4 13.7 16.1 17.1 18.5 18.6 19 18.2 17.3 15.8 13.9 12 11 9.3 7.9 6.7 6 5.2 4.6 4.3

3.5 3.9 4.3 5 5.3 6.3 6.7 7.9 8.9 10 11 13.1 14.5 17.2 18.6 20.5 20.7 21.7 20.5 19.3 17.5 15.2 13.1 11.7 10 8.4 7.2 6.3 5.5 4.8 4.5

3.5 3.9 4.3 5 5.3 6.2 6.7 7.7 8.6 9.6 10.7 12.5 14.4 17.3 19.5 21.9 22.7 23.6 22.6 21.3 19 16.1 13.9 12.1 10.3 8.7 7.3 6.5 5.6 4.9 4.5

3.4 3.8 4.2 4.8 5.2 5.7 6.3 7.2 7.9 8.6 9.7 11.1 13 16.5 19 21.3 23.6 24.1 23.6 22 19.7 16.6 14.2 12.3 10.6 8.9 7.4 6.6 5.6 4.9 4.6

3.3 3.6 4.1 4.5 4.8 5.3 5.6 6.2 6.7 7.7 8.4 10.1 13.4 16.6 18.3 22.7 22.9 23.3 21.4 19.6 16.5 14.1 12.3 10.6 8.7 7.4 6.6 5.6 4.9 4.6 4.6

3.2 3.3 3.8 4.1 4.3 4.5 4.6 4.6 5 4.5 4.9 4.2 5.6 8.2 11.7 12.1 18.9 19.9 20.3 19.6 18.1 15.4 13.2 11.4 10.1 8.2 7.2 6.5 5.5 4.9 4.6

3.1 3.2 3.3 3.6 3.8 3.6 3.6 2.8 3.1 1.2 1.1 -0.7 -0.4 -0.5 3.5 3.3 11.1 13.9 15.4 14.4 14.7 13.2 11.7 10.1 9.4 7.7 6.7 6 5.2 4.6 4.5

2.8 2.9 2.9 2.8 2.9 2.2 1.9 0.4 -0.5 -3.1 -4.3 -7.2 -7.6-10.6 -7.9 -9.4 -1.1 3.2 6 7 7.9 9.6 9 8.2 7.6 6.7 6 5.5 4.9 4.3 4.2

2.4 2.5 2.5 2 2.1 0.9 0.8 -2.1 -3.1 -6.2 -9.6-14.5-15.5-20.7 -22-20.9-13.8 -11 -5.3 -1.5 1.9 5.2 6.2 5.6 6.6 5.6 5.3 4.9 4.5 3.7 3.9

2.1 2.1 1.9 1.2 1.1 -0.4 -1 -3.5 -6-12.1-13.5-20.5-25.3-29.9-32.8-33.7-29.5-21.6-16.1 -9.4-3.3 0.5 2.5 3.3 3.8 4.3 4.2 4.2 3.9 3.5 3.6

1.8 1.6 1.4 0.5 0.4-1.2-2.5-5.7 -9-15.5 -18-26.5-32.6 -36 -36 -36 -36-32.2-26.5-16.9-10.3-3.8-1.1 0.8 1.9 2.9 3.3 3.3 3.3 3.2 3.2

1.5 1.4 0.9 -0.5 -0.7 -2.5 -3.8 -7.9-11.4-18.8 -23-32.5 -36 -36 -36 -36 -36 -36-32.8 -25-16.8 -8.2 -4.9 -1.4 0.4 1.6 2.4 2.5 3.8 2.8 2.8

1.2 1.1 0.4 -0.8 -1.6 -3.3 -5.5 -8.9-14.8-20.9-27.4-34.5 -36 -36 -36 -36 -36 -36 -36-31.1-22.2-12.5 -8.2 -4.1 -1.2 0.4 1.6 1.9 3.2 2.4 2.4

1.1 0.7 0.4-1.1 -2.1 -4.2-5.9 -10-15.8-23.1-28.8-35.6 -36 -36 -36 -36 -36 -36 -36-33.6-26.1-14.7-10.6-5.6-2.6-0.7 0.8 1.1 1.6 1.9 2.1

0.9 0.4 -0.5 -1.5 -2.6 -4.8 -6.6-10.8-16.2-24.1-29.2-35.9 -36 -36 -36 -36 -36 -36 -36 -34-27.9-16.6-11.5 -6.9 -3.5 -1.5 -0.4 0.5 1.1 1.6 1.8

0.8 0.4 -0.5 -1.6 -2.6 -4.8 -6.7-10.6-14.9-23.4-28.2-34.9 -36 -36 -36 -36 -36 -36 -36 -33-27.7-16.8-11.8 -7.4 -4.5 -2.1 -0.7 0.4 0.7 1.2 1.5

0.8 0.4 -0.5 -1.6 -2.6 -4.6 -6.3 -10-14.8-21.4-25.8-32.5 -36 -36 -36 -36 -36 -36 -36-31.1-25.6-15.8-11.7 -7.3 -4.8 -2.4 -0.8 -0.5 0.4 1.1 1.2

0.7 0.4 -0.5 -1.6 -2.5 -4.3 -5.9 -8.9 -13-18.8-21.9-27.7 -33 -36 -36 -36 -36 -36 -34 -31-22.6-14.5 -11 -6.9 -4.6 -2.4 -0.9 -0.5 0.4 0.9 1.1

0.7 0.4 -0.5 -1.4 -2.2 -3.8 -5.3 -7.9-11.4-15.6-18.6-23.1-28.2-31.8-34.9-33.6-34.3 -32-29.4-27.8-19.3-12.7 -9.6 -6.2 -4.2 -2.2 -0.9 -0.5 0.4 0.8 0.9

0.7 0.4 -0.5 -1.1 -1.9 -3.2 -4.5 -6.5 -9.4 -13-15.1-18.5-23.2 -25-27.7-26.7-28.1-25.7-21.9 -23-15.2-10.4 -8.2 -5.3 -3.8 -1.9 -0.8 -0.5 0.4 0.8 0.9

0.7 0.4 -0.5 -0.8 -1.5 -2.5 -3.8 -5 -7.7 -9.7-12.1-14.4-17.8-18.2-21.3-20.9-20.6-20.3-17.3 -19-11.7 -8.6 -6.6 -4.3 -3.1 -1.6 -0.7 -0.4 0.4 0.8 0.9

0.8 0.5 0.4 -0.5 -1.1 -1.9 -2.9 -3.9 -5.7 -7 -8.9-10.6 -13-13.7-14.8-15.4-14.7-13.8-13.5-14.5 -9.3 -6.2 -5 -3.4 -2.6 -1.2 -0.7 0.4 0.4 0.8 0.9

0.8 0.7 0.4 -0.5 -0.7 -1.4 -2.1 -2.9 -4.5 -5.7 -6.7 -8.2 -9.4 -10-11.4-10.7-11.1-10.3 -10-10.1 -6.7 -4.5 -3.9 -2.6 -1.6 -0.9 -0.5 0.4 0.4 0.8 0.9

0.9 0.7 0.4 0.4 -0.5 -0.9 -1.6 -2.2 -3.3 -4.2 -4.9 -5.9 -7.2 -7.3 -8.2 -7.9 -8 -7.4 -7.4 -8.3 -5.2 -3.6 -2.8 -1.9 -1.2 -0.7 -0.4 0.5 0.5 0.8 0.9

1 0.8 0.5 0.4 -0.5 -0.5 -0.9 -1.4 -2.2 -3.1 -3.5 -3.9 -4.8 -5.2 -5.6 -5.5 -5.6 -5.2 -5 -6.5 -3.5 -2.4 -1.8 -1.1 -0.8 -0.5 0.4 0.5 0.6 0.8 0.9

1.1 0.9 0.8 0.5 0.4 -0.4 -0.7 -0.8 -1.4 -1.8 -2.4 -2.6 -3.2 -3.3 -3.9 -3.6 -3.8 -3.6 -3.3 -4.2 -2.4 -1.6 -1.2 -0.7 -0.5 0.4 0.4 0.8 0.7 0.9 0.9

1.2 1.1 0.9 0.8 0.4 0.4 -0.5 -0.5 -0.8 -1.1 -1.5 -1.6 -2.2 -2.1 -2.6 -2.5 -2.6 -2.5 -2.4 -2.9 -1.5 -0.9 -0.7 -0.5 -0.4 0.4 0.5 0.8 0.8 0.9 1.1

1.2 1.1 0.9 0.9 0.5 0.5 0.4 0.4 -0.5 -0.9 -0.8 -0.9 -1.2 -1.2 -1.5 -1.5 -1.6 -1.5 -1.2 -1.9 -0.8 -0.5 -0.5 0.4 0.4 0.5 0.7 0.8 0.9 0.9 1.1

1.2 1.2 1.1 1 0.8 0.7 0.5 0.4 0.4 -0.4 -0.5 -0.5 -0.7 -0.7 -0.8 -0.8 -0.9 -0.8 -0.7 -0.7 -0.5 -0.4 0.4 0.4 0.5 0.7 0.8 0.8 0.9 1.1 1.1

Training Set 1: 105mm HEAT

99

3.5 4.1 4.7 5.5 6.6 7.7 9 10.8 12.7 15.5 18.1 21 23.6 25.8 27.1 26.8 25.7 23.7 21.3 18.3 15.9 13 11.7 9.6 8 7 5.9 4.8 4.3 3.8 3.3

3.6 4.2 4.9 5.6 6.9 8 9.6 11.7 13.9 16.9 20 23.6 26.8 29.2 30.8 31.1 29.8 27.5 24.6 20.9 17.8 14.7 12.8 10.4 8.7 7.3 6.2 5.3 4.5 3.9 3.5

3.8 4.3 5 5.9 7.1 8.4 10 12.3 14.7 17.8 21.4 25.4 28.9 31.8 33 33.6 32 30.4 26.8 23 19.3 15.9 13.7 11.1 9.1 7.9 6.6 5.6 4.8 4.2 3.6

3.8 4.3 5 5.8 7 8.4 10 12.3 14.5 17.8 21.3 25.3 29.2 31.8 33.6 33.9 33 30.9 27.9 23.7 20 16.6 14.2 11.5 9.4 7.9 6.7 5.7 4.9 4.3 3.8

3.8 4.3 4.9 5.7 6.9 8.2 9.6 11.7 13.8 16.9 19.7 23.4 26.8 29.2 31.3 31.9 32.2 29.4 27.1 23 19.7 16.5 14.1 11.5 9.6 8 6.7 5.7 4.9 4.3 3.8

3.6 4.2 4.8 5.5 6.6 7.6 8.9 10.6 12.4 14.4 16.8 18.9 21.6 22.9 25.5 25.8 27.4 25.3 24.4 21.3 18.6 15.8 13.7 11.3 9.4 7.9 6.7 5.7 4.9 4.3 3.8

3.5 4.1 4.5 5 5.9 6.7 7.9 8.9 10.1 11 12.3 11.8 14.1 12.4 15.1 15.1 17.8 17.8 19.2 17.5 16.6 14.4 12.5 10.6 9 7.6 6.6 5.6 4.8 4.3 3.8

3.3 3.8 4.2 4.6 5.2 5.6 6.3 6.6 6.9 6.6 6 3.5 3.3 -0.8 2.1 0.7 6.5 8.6 13.4 12.4 13.4 11.8 11.3 9.4 8.3 7.2 6.2 5.5 4.8 4.2 3.8

3.2 3.5 3.8 4.1 4.3 4.5 4.6 4 3.2 1.2-0.8-6.2-8.4-15.2-13.2-15.2-5.6-1.8 4.9 6.7 9.4 8.9 9.1 8.2 7.4 6.6 5.7 5.1 4.5 4.1 3.6

3.1 3.2 3.3 3.3 3.5 3.3 2.9 1.5-0.4-3.6-7.9-15.2-21.3-28.8-28.7-27.5-20.2-12.4-3.9 0.8 4.6 5.2 7 6.6 6.5 5.7 5.3 4.7 4.3 3.9 3.5

2.8 2.9 2.9 2.8 2.6 2.1 1.1 -0.9 -3.1 -8.7-13.8-24.3-31.6 -36 -36 -36-31.1 -25-12.5 -5 0.5 2.5 4.6 5 5.3 5 4.9 4.5 4.1 3.8 3.3

2.6 2.6 2.5 2.4 1.8 0.9 -0.5-2.9 -6-12.4-19.6-30.9 -36 -36 -36 -36 -36-32.9 -21 -11 -3.9-0.5 2.2 3.3 4.2 4.3 4.3 4.1 3.8 3.5 3.2

2.4 2.4 2.2 1.9 1.2 0.4 -1.4-4.2-8.3-14.9-23.4-33.9 -36 -36 -36 -36 -36 -36-27.4-16.1 -7.6-3.1 0.4 2.1 3.3 3.6 3.8 3.6 3.5 3.3 3.2

2.2 2.2 2 1.5 0.8 -0.5 -2.3 -5.3 -9.8-16.8-25.7-35.6 -36 -36 -36 -36 -36 -36-30.5-19.3-10.1 -5 -1.2 0.8 2.4 2.9 3.3 3.3 3.2 3.1 2.9

2.1 2.1 1.7 1.2 0.5 -0.7 -2.6-5.7 -10-16.9-25.5-35.5 -36 -36 -36 -36 -36 -36 -32-20.7-11.4-6.3-2.2 0.4 1.6 2.4 2.8 2.9 3.1 2.9 2.8

2.1 1.9 1.6 1.2 0.4 -0.7 -2.5-5.2 -9-15.2-22.9-32.6 -36 -36 -36 -36 -36 -36-30.8-19.6-11.4-6.3-2.6-0.5 1.2 2.1 2.5 2.8 2.8 2.8 2.6

2 1.8 1.5 1.2 0.4 -0.6 -2.2-4.6-7.8-12.4-19.6-27.5-35.2 -36 -36 -36 -36-33.9-27.2-16.5-9.6-5.5-2.4-0.5 1.1 1.9 2.4 2.6 2.6 2.6 2.6

1.9 1.8 1.5 1.2 0.5 -0.5 -1.6-3.5 -6-9.3-14.6-20.6-27.7-31.9-33.9 -35-29.3 -24-19.9-11.8-7.2-3.9-1.6 0.4 1.2 1.9 2.3 2.4 2.5 2.5 2.5

1.9 1.8 1.6 1.3 0.8 0.4 -0.8 -2.1 -3.8 -5.6 -9-12.7-19.3-18.8 -22-21.3 -19-16.4-13.5 -7.9 -4.9 -2.5 -0.8 0.5 1.3 1.9 2.2 2.4 2.4 2.4 2.4

1.8 1.7 1.6 1.4 0.9 0.5 -0.5 -1.1 -2.2 -3.7 -5.6 -7.7-10.7-10.7-12.7-11.7-10.7 -7.9 -6.9 -4.1 -2.6 -0.8 0.4 0.9 1.5 1.9 2.2 2.2 2.4 2.4 2.2

1.8 1.6 1.6 1.4 1.1 0.7 0.4 -0.7 -1.2 -2.1 -3.3 -4.3 -5.9 -6 -6.6 -5.9 -5.3 -4.1 -3.2 -1.2 -0.7 0.4 0.8 1.3 1.6 1.9 2.1 2.2 2.2 2.2 2.2

1.7 1.6 1.5 1.4 1.1 0.8 0.4 -0.5 -0.9 -1.6 -2.6 -3.8 -4.6 -5.9 -5.9 -6.2 -4.5 -3.2 -1.8 -0.9 -0.4 0.4 0.9 1.4 1.6 1.9 2.1 2.1 2.1 2.1 2.1

1.6 1.6 1.5 1.2 0.9 0.7 0.4 -0.5 -1.1 -2.2 -3.3 -5.3 -6.6 -9 -9.4-10.1 -7.3 -5.5 -3.2 -1.9 -0.5 0.4 0.7 1.1 1.5 1.6 1.9 1.9 2.1 2.1 2.1

1.6 1.5 1.4 1.1 0.8 0.4 -0.5-0.9-1.9-3.6-5.5 -9-10.3-14.5 -16-17.5-13.2-10.1-6.9-4.5-2.1 -1-0.4 0.5 1.1 1.4 1.6 1.8 1.9 1.9 1.9

1.5 1.4 1.2 0.9 0.5 0.4 -0.7 -1.6 -3.1 -5.1 -7.9-12.5-15.6-20.9-23.4 -25 -19-16.1-11.1 -7.2 -3.8 -2.5 -0.8 -0.4 0.7 1.1 1.5 1.6 1.6 1.8 1.8

1.5 1.3 1.1 0.8 0.4 -0.5 -1.1-2.4-4.2-6.7-10.3-15.8-20.6-26.5-30.2-30.6 -26-21.3-15.5-10.7-6.2-3.9-1.8-0.7 0.4 0.7 1.2 1.4 1.5 1.6 1.6

1.4 1.2 0.9 0.7 0.4 -0.7 -1.6-3.2-5.3-8.3-12.5-18.9-24.6-31.2-34.2-34.7-31.6-26.4-19.5-13.5-8.3-5.6 -3-1.4-0.5 0.4 0.9 1.1 1.4 1.5 1.6

1.2 1.1 0.8 0.4 -0.5 -0.9 -2.2-3.8-6.2-9.4-13.9-20.7-27.5-33.2 -36 -36-34.3-29.6 -22-15.6-9.8-6.7-3.8-1.9-0.8-0.4 0.7 0.9 1.2 1.4 1.5

1.2 0.9 0.8 0.4 -0.5 -1.1 -2.4 -3.9 -6.6 -9.7-14.4-21.2-27.9-33.2 -36 -36 -35-30.8-23.7-16.8 -11 -7.6 -4.5 -2.5 -1.1 -0.5 0.4 0.8 1.1 1.2 1.5

1.1 0.9 0.7 0.4 -0.5 -1.2 -2.6-4.1-6.6-9.7-14.1-20.5-26.8-31.8 -35-35.2-33.6-29.2-22.4-16.1 -11-7.6-4.6-2.6-1.3-0.5 0.4 0.7 0.9 1.2 1.4

1.1 0.9 0.5 0.4 -0.5 -1.2 -2.6-3.9-6.2 -9-13.1-18.2-24.3-28.4-31.8-31.9-30.8 -26-20.5-14.8-10.1 -7-4.5-2.6-1.4-0.5 0.4 0.6 0.9 1.1 1.4

1.1 0.9 0.5 0.4 -0.5 -1.1 -2.2-3.5-5.5-7.9-11.1-15.2-20.3-23.1-26.4-26.8-25.8-21.7-17.8 -13 -9-6.6-4.2-2.4-1.3-0.5 0.4 0.5 0.9 1.1 1.2

1.1 0.9 0.6 0.4 -0.5 -0.9 -1.9 -3-4.7-6.6-9.3-12.1-15.9-17.5-21.2-20.2-19.9-17.5-14.2-10.4-7.7-5.5-3.6-2.1-1.1-0.5 0.4 0.5 0.9 1.1 1.2

1.1 0.9 0.7 0.4 -0.5 -0.7 -1.5-2.4-3.9 -5-7.2-9.4-12.4-13.2-15.5-14.7-14.4-12.7-10.7 -8 -6-4.3-2.8-1.6-0.8-0.5 0.4 0.5 0.9 1.1 1.2

1.1 0.9 0.7 0.4 0.4 -0.5 -1.1 -1.8 -2.8 -3.9 -5.3 -7 -8.4 -9.4-10.3-10.4 -10 -9 -7.7 -6 -4.8 -3.3 -2.1 -1.2 -0.7 -0.5 0.4 0.7 0.9 1.1 1.2

Training Set 2: 3-5in Rocket

100

1.5 1.6 1.8 2 2.2 2.4 2.6 2.8 3.1 3.3 3.5 3.8 3.9 3.9 3.9 3.8 3.6 3.5 3.3 3 2.4 2.6 2.4 2.4 1.9 1.9 1.4 1.4 1.1 1.2 1.2

1.6 1.8 1.9 2.1 2.4 2.6 2.9 3.3 3.6 3.9 4.2 4.5 4.6 4.6 4.6 4.6 4.3 4.2 3.9 3.6 2.8 2.9 2.6 2.4 2.2 2 1.5 1.5 1.2 1.4 1.2

1.8 1.9 2.1 2.4 2.6 3.1 3.3 3.8 4.2 4.5 4.5 5.5 5.6 5.7 5.7 5.6 5.3 5 4.5 4.2 3.5 3.3 3.1 2.6 2.4 2.1 1.6 1.6 1.5 1.5 1.4

1.9 2.1 2.2 2.6 2.9 3.3 3.8 4.3 4.9 5.5 5.9 6.5 6.7 7 6.9 6.7 6.5 6 5.3 4.9 4.1 3.9 3.3 2.9 2.6 2.4 1.9 1.8 1.6 1.5 1.4

1.9 2.2 2.5 2.8 3.3 3.7 4.2 4.9 5.6 6.3 7.2 7.7 8.3 8.4 8.4 8.2 7.6 7.3 6.5 5.7 4.9 4.3 3.8 3.3 2.9 2.6 2.2 1.9 1.8 1.5 1.5

2.1 2.2 2.6 3.1 3.5 4.1 4.6 5.5 6.5 7.4 8.4 9.6 10 10.7 10.1 10.1 9.3 8.9 7.4 6.7 5.6 4.9 4.2 3.6 3.2 2.6 2.4 2.1 1.8 1.5 1.5

2.1 2.4 2.7 3.2 3.8 4.3 5.2 6.2 7.3 8.4 9.6 11.1 11.8 12.7 12.4 12.3 11 10.1 8.6 7.7 6.3 5.6 4.6 3.9 3.3 2.9 2.4 2.1 1.9 1.6 1.6

2.1 2.4 2.8 3.3 3.9 4.6 5.5 6.7 8 9.7 11.3 12.8 14.1 14.8 14.5 14.5 13 11.8 9.8 8.6 7.2 6 5 4.2 3.5 3.1 2.5 2.2 1.9 1.6 1.6

2.1 2.4 2.8 3.3 3.9 4.8 5.7 7 8.4 10.3 12.4 14.3 15.8 17 16.6 16.6 14.9 13.2 11 9.4 7.7 6.6 5.3 4.3 3.6 3.2 2.6 2.2 2.1 1.8 1.6

2.1 2.4 2.8 3.3 3.9 4.6 5.6 7 8.7 10.6 12.7 14.9 16.9 18.2 18.5 17.9 16.2 14.1 11.8 9.8 8 6.7 5.5 4.5 3.8 3.2 2.6 2.4 2.1 1.8 1.6

2.1 2.2 2.6 3.1 3.8 4.3 5.3 6.6 8.2 9.8 11.7 13.9 16.2 17.5 18.6 17.9 16.4 14.1 12.1 9.8 8.2 6.7 5.5 4.5 3.8 3.2 2.6 2.2 2.1 1.8 1.6

1.9 2.1 2.4 2.8 3.3 3.9 4.6 5.6 6.7 8.2 9.4 11.3 13.2 14.4 16.5 15.5 14.8 13 11.1 9.6 7.6 6.5 5.2 4.3 3.6 3.2 2.6 2.2 2.1 1.8 1.6

1.8 1.9 2.2 2.4 2.8 3.1 3.8 4.1 5 5 5.5 6.2 7 7.9 11.3 10.7 11.4 9.8 9.8 8 6.9 5.7 4.8 3.9 3.3 3 2.5 2.2 1.9 1.8 1.6

1.6 1.6 1.8 1.8 2.2 2.1 2.4 2.2 1.8 1.2 0.4 -1.1 -1 -1.2 1.9 2.9 5 5.2 6.2 5.7 5.2 4.8 3.9 3.3 3 2.6 2.2 2.1 1.8 1.6 1.5

1.4 1.4 1.4 1.2 1.2 0.7 0.7-0.5-1.6-3.9-6.2-11.1 -11-12.3-9.7-6.5-3.6-0.5 2.5 3 3.5 3.2 3.1 2.8 2.6 2.4 2.1 1.8 1.6 1.6 1.5

1.1 1.1 0.9 0.8 0.4 0.4-0.9-2.2 -5-8.3 -12 -19-20.6-23.6-19.2-16.9-10.7-5.5-1.9-0.5 1.2 1.8 2.1 2.1 2.1 1.9 1.8 1.6 1.6 1.5 1.5

0.9 0.8 0.5 0.4-0.5-1.2-2.6-4.3-7.5-11.7-16.7-22.9-27.8-29.5-26.8-24.8-16.5-10.6-5.7-3.1-0.7 0.4 1.1 1.4 1.5 1.5 1.6 1.5 1.5 1.4 1.4

0.8 0.5 0.4-0.5-0.9-2.1-3.5 -6-9.4-13.9-19.9-26.4-31.6-33.3-31.3-28.7-20.7-14.4-8.6-5.5-2.4 -1 0.4 0.7 1.1 1.1 1.4 1.3 1.4 1.2 1.2

0.7 0.4 0.4-0.5-1.3-2.4-4.1-6.2 -10-14.8-20.1-26.5-32.2-33.9-33.3-30.5-23.7-17.2-11.3-7.6-3.9-2.4-0.7 0.4 0.5 0.8 1.1 1.1 1.2 1.1 1.2

0.5 0.4 -0.5 -0.7 -1.5 -2.6 -4.5 -6.7-10.4-14.5-20.2-25.4-31.6-32.9-32.6-29.6-23.7-17.9-12.1 -8.3 -4.8 -3.1 -1.2 -0.5 0.4 0.5 0.8 0.9 1.1 1.1 1.1

0.4 0.4 -0.5 -0.8 -1.6 -2.8 -4.5 -6.6 -10-13.4-18.6 -23-28.8-29.5-30.4-26.8-22.2-16.9-12.3 -8.4 -5.2 -3.3 -1.6 -0.7 -0.5 0.4 0.7 0.8 0.9 0.9 1.1

0.4 0.4-0.5-0.8-1.6-2.6-4.2 -6 -9-11.7-16.2 -19-24.6-24.6-25.5-22.4 -19-15.2-11.3-8.2-5.2-3.3-1.8-0.9-0.5 0.4 0.5 0.7 0.9 0.9 1

0.4 0.4 -0.5 -0.8 -1.5 -2.4 -3.8 -5.3 -7.7 -9.8-13.2-15.8 -19-19.6-20.6-18.1-16.2-12.5 -9.7 -7.2 -4.8 -3.2 -1.8 -0.9 -0.5 0.4 0.4 0.7 0.8 0.9 0.9

0.4 0.4 -0.5 -0.7 -1.2 -2.1 -3.1 -4.3 -6.2 -7.9-10.7-11.8-13.2-14.8-16.6-14.1 -13 -9.7 -8 -6.2 -4.2 -2.9 -1.6 -0.9 -0.5 0.4 0.4 0.7 0.8 0.8 0.9

0.4 0.4 -0.5 -0.7 -1.1 -1.6 -2.6 -3.5 -5 -6.1 -8.3 -9.1-11.4-11.1-12.3-10.6 -10 -7.6 -6.2 -4.8 -3.3 -2.4 -1.4 -0.7 -0.5 0.4 0.4 0.7 0.8 0.8 0.9

0.4 0.4 -0.4 -0.5 -0.8 -1.2 -2.1 -2.8 -4 -4.8 -6.2 -6.9 -8.3 -8.3 -8.9 -7.6 -7.3 -5.7 -4.9 -3.8 -2.6 -1.8 -0.9 -0.7 -0.5 0.4 0.4 0.7 0.8 0.8 0.9

0.5 0.4 0.4 -0.5 -0.7 -0.9 -1.5 -2.1 -2.9 -3.5 -4.5 -4.8 -5.6 -5.7 -6.3 -5.3 -5.3 -4.1 -3.8 -2.9 -1.9 -1.4 -0.8 -0.5 -0.4 0.4 0.5 0.7 0.7 0.8 0.9

0.5 0.4 0.4 -0.4 -0.5 -0.7 -0.9 -1.4 -2.1 -2.5 -3.2 -3.3 -4.1 -3.9 -4.6 -3.6 -3.3 -2.7 -2.5 -1.9 -1.5 -0.9 -0.7 -0.5 0.4 0.4 0.5 0.7 0.8 0.8 0.9

0.6 0.5 0.4 0.4 -0.5 -0.5 -0.7 -0.9 -1.3 -1.6 -2.1 -2.2 -2.6 -2.6 -3.1 -2.4 -2.4 -1.9 -1.8 -1.2 -0.8 -0.7 -0.5 -0.4 0.4 0.4 0.5 0.7 0.7 0.8 0.9

0.7 0.5 0.4 0.4 0.4 -0.5 -0.5 -0.7 -0.8 -1.1 -1.4 -1.5 -1.8 -1.8 -2.1 -1.6 -1.5 -1.2 -1 -0.8 -0.7 -0.5 -0.4 0.4 0.4 0.4 0.5 0.8 0.7 0.8 0.9

0.8 0.6 0.5 0.4 0.4 0.4 -0.5 -0.5 -0.5 -0.7 -0.8 -0.8 -0.9 -0.9 -1.2 -0.9 -0.9 -0.7 -0.7 -0.5 -0.5 -0.4 0.4 0.4 0.4 0.5 0.7 0.8 0.7 0.9 0.9

0.8 0.7 0.5 0.5 0.4 0.4 0.4 0.4 -0.5 -0.5 -0.7 -0.5 -0.6 -0.7 -0.7 -0.7 -0.7 -0.5 -0.5 -0.5 -0.5 0.4 0.4 0.4 0.4 0.7 0.7 0.8 0.7 0.9 0.9

0.8 0.8 0.7 0.5 0.5 0.4 0.4 0.4 0.4 0.4 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.7 0.7 0.8 0.7 0.9 0.8

0.8 0.8 0.5 0.7 0.5 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.5 0.4 0.4 0.8 0.8 0.9 0.7 0.9 0.9

0.8 0.8 0.5 0.8 0.7 0.7 0.5 0.5 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.4 0.6 0.5 0.4 0.4 0.8 0.8 0.9 0.8 0.9 0.9

Training Set 2: 60mm Mortar

101

i.l 3.3 3.8 4.2

3.3 3.6 4.2 4.6

3.5 3.9 4.5 5

3.8 4.2 4.9 5.6

3.9 4.5 5.2 6

4.1 4.6 5.5 6.2

4.2 4.8 5.6 6.6

4.2 4.8 5.6 6.6

4.2 4.8 5.6 6.5

4.1 4.6 5.5 6.2

3.9 4.3 5 5.6

3.6 3.9 4.5 5

3.3 3.6 3.9 4.3

3 3.2 3.3 3.5

2.6 2.6 2.6 2.5

2.2 2.1 1.9 1.6

1.8 1.6 1.5 0.8

1.5 1.2 0.9 0.4

1.2 0.9 0.5 -0.5

1.1 0.7 0.4 -0.7

0.9 0.5 -0.5 -0.9

0.8 0.4 -0.5 -0.9

0.7 0.4 -0.5 -0.9

0.7 0.4 -0.5 -0.9

0.7 0.4 -0.5 -0.8

0.8 0.4 -0.5 -0.7

0.8 0.5 0.4 -0.5

0.8 0.7 0.4 -0.4

0.9 0.8 0.4 0.4

0.9 0.8 0.5 0.4

0.9 0.9 0.5 0.5

1.1 0.9 0.7 0.8

1.1 0.9 0.8 0.8

1.1 1.1 0.9 0.9

1.2 1.1 1.1 1.1

4.8 5.5 6 6.7 7.4 8.3 9 9.3 9.8 10 9.6 9.4 8.7 8.2 7.7 6.7 6.3 5.7 5.2 4.6 4.2 3.8 3.3 3.1 2.6 2.4 2.2

5.5 6.2 6.9 8.2 9 10 11 11.7 12.1 12.1 11.7 11.4 10.6 10 9 8 7.3 6.6 5.9 5.2 4.6 4.1 3.6 3.3 2.9 2.5 2.4

6 7.2 8.2 9.4 10.6 12.3 13.4 14.4 15.2 15.2 14.7 13.9 12.5 11.7 10.6 9.6 8.4 7.4 6.7 5.7 5.2 4.5 3.9 3.5 3.1 2.6 2.5

6.6 7.9 8.9 10.8 12 14.4 15.8 17.3 18.2 18.1 17.5 16.5 15.1 13.9 12.4 11.1 9.6 8.6 7.4 6.5 5.6 4.9 4.3 3.8 3.3 2.8 2.6

7.2 8.6 10 12.3 13.8 16.8 18.9 20.7 21.9 21.9 20.6 19.6 17.8 16.1 14.4 12.8 10.8 9.8 8.3 7.2 6.2 5.2 4.6 3.9 3.5 3.1 2.6

7.7 9.1 10.7 13.4 15.2 18.8 21.9 24.3 25.5 25.5 24.6 22.7 20.3 18.3 16.5 14.5 12.3 10.8 9.1 7.9 6.7 5.6 4.9 4.2 3.6 3.3 2.8

8 9.7 11.7 14.5 17 20.5 24 26.8 28.7 29.9 27.9 26.3 23.1 21 18.3 16.4 13.5 11.8 10 8.4 7.2 5.9 5 4.3 3.8 3.3 2.9

8.2 9.8 11.8 14.7 17.5 21.2 25 27.9 30.4 30.9 30.1 28.7 25.7 23.3 20.5 17.8 14.7 12.7 10.6 8.9 7.4 6.2 5.3 4.5 3.9 3.3 3.1

8 9.6 11.7 14.4 16.9 20.3 24.1 27 29.2 30.1 30.1 28.5 27.1 24.4 21.4 18.5 15.4 13 10.8 9 7.6 6.3 5.3 4.5 3.9 3.5 3.1

7.6 8.9 11 13.1 15.6 18.2 20.7 22.6 24.8 24.3 26 23.8 25 23.1 20.9 17.9 15.2 12.7 10.8 8.7 7.6 6.2 5.3 4.5 3.9 3.5 3.1

6.7 7.9 9.6 11.1 12.5 13.9 15.5 14.5 14.7 13.4 17.8 15.2 20.2 18.6 18.5 16.2 14.5 12.1 10.4 8.4 7.3 6 5.2 4.3 3.9 3.3 3.1

5.9 6.7 7.7 8.4 9.1 9.1 6.5 6.6 3.5 1.2 3.6 3.3 11.3 10.7 13.9 13.4 12.5 10.6 9.4 7.9 6.9 5.6 4.9 4.2 3.8 3.3 2.9

5 5.2 5.6 5.5 5 2.8 -0.9 -4.3 -8.4-14.5-11.3 -9.6 -1.6 1.9 8.2 9 9.8 8.4 8 6.7 6.2 5.2 4.6 3.9 3.6 3.2 2.8

3.8 3.3 3.3 0.9 0.4-3.3-9.3-15.6-23.3-30.1-30.9-25.8-12.4 -7 1.8 3.8 5.6 5.7 6 5.2 5 4.3 4.1 3.6 3.3 3 2.6

2.4 1.6 1.1 -1.5-3.9-9.8-17.5-25.8-32.5 -36 -36 -36-24.8-18.3-6.7-2.6 1.2 2.9 3.8 3.8 4.1 3.6 3.5 3.2 3.1 2.9 2.5

1.1 0.4-0.9-4.9 -8-15.2-23.4-32.5 -36 -36 -36 -36 -36-26.4-14.2-8.4-2.4 0.4 1.6 2.2 2.8 2.8 3.1 2.8 2.6 2.5 2.4

-0.5 -1.2 -3.2 -6.7 -12-19.3-28.7-35.9 -36 -36 -36 -36 -36-32.9-21.3-13.4 -6.3 -2.6 -0.7 0.8 1.6 2.1 2.4 2.4 2.4 2.2 2.2

-0.9-2.4 -5-9.3-14.8-23.6-32.3 -36 -36 -36 -36 -36 -36-35.6-25.7-17.5-9.1 -5-2.1-0.5 0.8 1.4 1.9 1.9 2.1 2.1 2.1

-1.4 -3.2 -6 -10-15.8 -24-33.2 -36 -36 -36 -36 -36 -36 -36-29.8-20.9 -12 -7.2 -3.9 -1.6 -0.5 0.6 1.4 1.5 1.6 1.8 1.9

-2-3.8-6.6-10.8-16.3-24.7-33.5 -36 -36 -36 -36 -36 -36 -36-30.6-22.3 -13-8.4-4.8-2.5-0.7 0.4 0.9 1.1 1.5 1.6 1.6

-2.2 -4.1 -6.6-10.8-16.1-23.6-32.3 -36 -36 -36 -36 -36 -36 -36 -30 -22-13.8 -8.9 -5.5 -2.9 -1.2 -0.5 0.5 0.9 1.2 1.4 1.6

-2.2 -4-6.5-10.1-15.1-21.3-19.2 -35 -36 -36 -36 -36 -36-34.9-28.1-20.7-13.2-8.9-5.6-3.2-1.5-0.6 0.4 0.8 1.1 1.2 1.5

-2.1 -3.8 -5.9 -9.1-13.4-18.5 -25-30.9 -36 -36 -36 -36 -36-31.1 -24-18.3-12.1 -8.2 -5.5 -3.2 -1.6 -0.7 0.4 0.6 0.9 1.2 1.4

-1.9-3.2 -5-7.9-11.3-15.2-20.2-24.7-30.9 -35-35.4-32.6-31.3-24.7-19.6-15.5-10.6-7.3-4.9-2.8-1.6-0.7 0.4 0.5 0.9 1.1 1.2

-1.6-2.8-4.3-6.6-9.3-12.4-16.2-19.3-24.3 -26-27.9-25.4-23.8-19.6-15.1-11.8-8.4 -6-4.2-2.4-1.4-0.5 0.4 0.5 0.8 1.1 1.2

-1.2 -2.2 -3.5 -5.3 -7.3 -9.4-12.1-14.2-18.5-18.5-20.1-18.8-18.2-14.8 -12 -9.1 -6.7 -4.9 -3.3 -1.9 -1.1 -0.5 0.4 0.5 0.8 1.1 1.2

-0.9 -1.6 -2.6 -4.1 -5.5 -7 -8.9-10.7 -13-13.2-14.2-13.5 -13-11.3 -8.9 -7.2 -5.2 -3.8 -2.6 -1.5 -0.8 -0.5 0.4 0.6 0.9 1.1 1.2

-0.7 -1.2 -1.9 -2.9 -4.2 -5 -6.3 -7.4 -9 -9.3 -9.8 -9.3 -9.1 -7.7 -6.6 -5.2 -3.9 -2.6 -1.8 -1.1 -0.5 0.4 0.4 0.7 0.9 1.1 1.2

-0.5 -0.7 -1.2 -1.9 -2.8 -3.8 -4.3 -4.9 -6.2 -6.5 -6.9 -6.6 -6.6 -5.5 -4.5 -3.8 -2.8 -1.8 -1.2 -0.7 -0.5 0.4 0.5 0.8 0.9 1.1 1.2

0.4 -0.5 -0.7 -1.2 -1.9 -2.4 -2.9 -3.5 -4.2 -4.3 -4.6 -4.2 -4.3 -3.8 -2.9 -2.5 -1.6 -1.1 -0.7 -0.5 0.4 0.4 0.7 0.8 0.9 1.1 1.2

0.4 0.4 -0.5 -0.7 -1.1 -1.5 -1.9 -2.2 -2.6 -2.6 -2.9 -2.8 -2.6 -2.2 -1.8 -1.6 -0.9 -0.7 -0.5 0.4 0.4 0.5 0.8 0.9 1.1 1.1 1.2

0.5 0.4 0.4 -0.5 -0.7 -0.8 -1.1 -1.2 -1.6 -1.6 -1.8 -1.5 -1.6 -1.2 -1.1 -0.8 -0.5 -0.5 0.4 0.4 0.5 0.7 0.9 0.9 1.1 1.1 1.2

0.7 0.5 0.4 0.4 -0.5 -0.5 -0.7 -0.7 -0.8 -0.8 -0.9 -0.8 -0.8 -0.7 -0.7 -0.5 -0.4 0.4 0.4 0.5 0.7 0.8 0.9 1.1 1.1 1.2 1.2

0.8 0.7 0.5 0.4 0.4 0.4 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 0.4 0.4 0.5 0.5 0.8 0.8 0.9 1.1 1.1 1.2 1.2 1.2

0.9 0.8 0.8 0.7 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.7 0.8 0.9 0.9 1.1 1.1 1.1 1.2 1.2 1.2

Training Set 2: 81 mm Mortar

102

[2.5 2.6 2.8 2.8 2.9 3.1 3.1 3.2 3.2 3.1 3.2 3.2 3.2 3.3 3.5 3.5 3.5 3.6 3.6 3.6 3.6 3.5 3.3 3.3 3.2 3.1 2.8 2.6 2.5 2.4 2.2

2.6 2.8 2.9 3.1 3.2 3.2 3.2 3.3 3.3 3.2 3.3 3.2 3.3 3.3 3.5 3.6 3.8 3.9 3.9 3.9 3.9 3.9 3.8 3.5 3.5 3.3 3.2 2.9 2.6 2.6 2.4

2.9 3.1 3.2 3.3 3.3 3.3 3.3 3.3 3.3 3.2 3.2 3.2 3.2 3.3 3.5 3.8 3.9 4.1 4.3 4.2 4.3 4.2 4.1 3.9 3.8 3.5 3.3 3.2 2.9 2.6 2.5

3.1 3.2 3.3 3.5 3.6 3.6 3.5 3.5 3.3 3.2 3.2 2.9 3.1 3.1 3.5 3.6 3.9 4.3 4.6 4.6 4.6 4.6 4.3 4.3 4.1 3.9 3.5 3.3 3.1 2.9 2.6

3.3 3.5 3.5 3.8 3.8 3.8 3.8 3.6 3.3 3.1 2.6 2.4 2.4 2.4 2.9 3.3 3.8 4.3 4.8 4.9 5 4.9 4.9 4.6 4.5 4.2 3.9 3.8 3.3 3.2 2.8

3.5 3.8 3.9 4.1 4.1 4.1 3.9 3.6 3.2 2.6 2.1 1.5 1.4 1.2 1.9 2.6 3.3 4.3 4.9 5.3 5.5 5.5 5.3 5 4.9 4.6 4.3 3.9 3.6 3.3 3.1

3.8 3.9 4.2 4.3 4.3 4.3 4.2 3.6 3.1 2.1 1.1 0.4 -0.5 -0.7 0.4 1.4 2.6 4.1 5 5.6 5.9 6 5.9 5.6 5.3 5 4.6 4.3 3.9 3.6 3.3

4.1 4.3 4.5 4.6 4.8 4.6 4.3 3.8 2.8 1.5 0.4 -1.4 -2.4 -2.9 -1.2 -0.8 1.4 3.3 4.9 5.7 6.3 6.5 6.5 6.2 5.7 5.5 4.9 4.6 4.2 3.9 3.3

4.3 4.6 4.9 5.2 5.2 5 4.6 3.9 2.8 1.9 -1.2 -3.6 -4.9 -6.2 -4.3 -3.2 0.4 2.5 4.8 5.9 6.7 7 6.9 6.7 6.3 6 5.5 4.9 4.5 4.2 3.8

4.6 5 5.2 5.6 5.6 5.6 5 4.3 2.8 0.8 -2.4 -5.6 -7.7 -9.7 -8.4 -6.5 -2.1 1.2 4.3 6 7.2 7.6 7.6 7.4 6.9 6.6 5.7 5.5 4.8 4.3 3.9

4.9 5.3 5.6 6 6.3 6.3 5.9 5 3.3 0.8 -2.9 -7.4 -10.3 -12.8 -12.7 -9.1 -5.2 -0.5 3.9 6.2 7.7 8.4 8.3 8 7.6 7 6.2 5.7 5 4.6 4.2

5.3 5.7 6.2 6.6 6.9 7 6.7 5.9 4.1 1.5-3.2-8.2-12.4-15.8-16.2 -12-7.2-0.7 3.9 6.7 8.6 9 9 8.7 8.2 7.6 6.7 6 5.3 4.9 4.3

5.5 6.2 6.5 7.2 7.6 7.9 7.7 7 5 2.5-2.8-8.3-14.1-18.3-18.1-14.4-8.7-0.9 4.2 7.4 5.4 10.1 10 9.4 8.7 8.2 7.2 6.3 5.6 5 4.5

5.7 6.5 6.9 7.6 8.2 8.7 8.6 8.2 6.5 3.9 -1.5 -7.6-14.5-19.3-19.3-15.4 -8.7 -0.5 5.3 8.9 10.7 11.1 10.8 10.1 9.4 8.6 7.6 6.7 5.9 5.3 4.8

6 6.7 7.2 7.9 8.7 9.4 9.4 9.3 8.3 6.2 0.4 -5.9-13.4-18.5-18.6-14.8 -7.6 0.8 6.9 10.3 12 12.3 11.7 10.8 10 9 7.9 7 6.2 5.6 4.9

6.2 6.9 7.4 8.2 9 9.8 10 10 9.3 7 2.1 -3.6-11.7-17.3-17.1-13.2-5.7 2.4 8.4 11.4 13.1 13.1 12.4 11.4 10.4 9.3 8.2 7.2 6.3 5.7 5

6.3 7 7.7 8.3 9.1 9.8 10 10.1 9.4 6.7 2.4 -3.9-11.3-17.9-17.6-12.7 -6 3.1 9.1 12.1 13.5 13.5 12.8 11.7 10.7 9.1 8.3 7.3 6.5 5.7 5.2

6.3 7 7.7 8.3 9 9.6 9.6 9.6 8.6 4.9 0.5 -6.7-13.2-23.1 -22-17.6 -8.9 0.8 0.8 11.3 13 13.2 12.7 11.5 10.6 9.3 8.3 7.3 6.5 5.7 5.2

6.3 6.9 7.6 8.2 8.9 9 8.9 7.7 7 1.6 -3.3-11.8-20.2-32.8 -32 -27-16.2 -4.1 4.1 8.7 11.3 12.3 11.8 11 10.1 9 8.2 7.2 6.5 5.7 5.2

6.2 6.7 7.4 7.9 8.4 8.4 7.9 5.6 4.9-1.6-8.3-19.2-28.4 -36 -36-34.6 -27-10.7-0.7 4.9 8.7 10.1 10.6 10 9.4 8.4 7.7 7 6.2 5.6 5

6 6.6 7.2 7.4 7.7 7.6 6.7 4.2 2.5 -5 -13.2 -25.8 -34.7 -36 -36 -36 -34.9 -20.3 -7.9 0.4 4.9 7.9 8.6 8.9 8.6 7.7 7.2 6.6 6 5.5 5

5.9 6.3 6.9 7 7.2 6.9 5.9 3.2 0.7 -6.7-16.2-28.8 -36 -36 -36 -36 -36-29.2-15.4 -6.2 0.7 4.9 6.5 7 7.3 6.7 6.6 6.2 5.7 5.2 4.8

5.6 6 6.6 6.6 6.7 6.3 5.5 2.6 0.4-6.7-16.6-28.4 -36 -36 -36 -36 -36-34.6-21.2-11.2-3.3 0.9 3.9 4.9 5.9 5.7 6 5.6 5.5 4.9 4.6

5.5 5.7 6 6.2 6.2 5.9 4.9 2.2 0.4-5.6-14.2-23.6-35.7 -36 -36 -36 -36 -36-37.2-17.3-7.6-2.2 1.5 3.2 4.6 4.9 5.2 5 4.9 4.6 4.3

5.2 5.5 5.7 5.6 5.6 5 4.3 1.6 0.4 -4.6-11.3-18.1-30.5 -36 -36 -36 -36 -36-30.6-20.5-10.7 -5 -0.7 1.5 3.3 4.1 4.6 4.5 4.5 4.3 4.2

4.9 5 5.3 4.9 4.9 4.2 3.3 1.7-0.5-4.8-9.4-16.1-26.4 -36 -36 -36 -36 -36-33.3-24.8-13.5-7.9-2.5 0.4 2.1 3.3 3.9 4.1 4.2 3.9 3.9

4.6 4.8 4.8 4.3 4.2 3.3 2.1 -1.1 -2.1 -7.6-12.5-20.5-28.4 -36 -36 -36 -36 -36-35.6-28.8-16.2 -9.8 -4.2 -0.9 1.1 2.5 3.2 3.6 3.8 3.6 3.6

4.3 4.3 4.3 3.8 3.3 1.9 0.7 -3.5 -4.6-12.3-18.9 -30 -36 -36 -36 -36 -36 -36 -36-30.9-18.2-11.3 -5.6 -2.1 0.4 1.6 2.6 3.1 3.3 3.3 3.3

3.3 3.9 3.8 3.1 2.6 1.9-0.9-5.9-7.4-18.9-28.1 -36 -36 -36 -36 -36 -36 -36 -36-31.5 -19-11.5-6.2-2.6-0.5 1.4 2.2 2.6 3.1 3.2 3.2

3.6 3.6 3.3 2.6 1.6 1.4-1.9-7.6-10.7-21.4-32.6 -36 -36 -36 -36 -36 -36 -36 -36-30.2-18.5-11.1 -6.2-2.8-0.7 1.1 2.1 2.4 2.8 2.9 3.1

3.3 3.3 2.9 2.2 1.1 -0.7 -2.9 -8 -12-22.3-33.3 -36 -36 -36 -36 -36 -36 -36-33.7-27.4-16.8 -10 -5.6 -2.6 -0.7 0.9 1.8 2.2 2.6 2.6 2.8

3.2 3.1 2.6 1.9 1.9 -0.8 -2.8 -7.6-11.1-20.3-30.6 -36 -36 -36 -36 -36 -36 -36-28.4-22.7-14.5 -8.7 -4.5 -2.1 -0.5 0.9 1.6 2.1 2.5 2.6 2.6

2.9 2.8 2.4 1.9 1.8-0.8-2.5-6.2-9.3-16.4 -25-30.8 -36 -36 -36 -36-35.7-31.9 -22-17.8-11.7-7.3-3.8-1.6-0.5 0.9 1.6 2.1 2.4 2.5 2.5

2.8 2.6 2.2 1.8 1.1-0.5-1.8-4.5-6.9-12.3-17.3-22.6-26.8-29.4-30.6-30.8-29.8-22.3-16.6-13.2-8.3-5.5-2.8-1.1-0.5 1.1 1.6 1.9 2.2 2.7 2.4

2.6 2.6 2.2 1.8 1.2-0.4-0.9-3.1-4.6-8.3-11.4-15.4-18.9-19.9-20.7 -20-17.6-15.4-11.4-9.4 -6-3.8-1.8-0.8 0.4 1.2 1.6 1.9 2.2 2.2 2.4

Training Set 2: 105mm Artillery

103

16—4 4.3 4.8 5.2 5.7 6.2 6.9 7.4 8 8.4 8.7 8.7 9.3 9.1 9 8.7 8.3 8 7.7 7.2 6.7 6.2 5.7 5.2 4.8 3.9 3.9 3.5 3.2 3.1

3.9 4.3 4.9 5.3 5.9 6.6 7.2 8 8.7 9.3 9.8 10.1 10.4 11.1 11 10.8 10 10 9.6 9.3 8.3 7.7 6.9 6.6 5.7 5.3 4.3 4.3 3.9 3.5 3.3

4.3 4.8 5.3 6 6.7 7.3 8.3 9.3 10.1 11 11.4 12.1 12.4 13 12.8 12.8 11.8 12 11.1 10.7 9.4 8.9 7.9 7.7 6.5 6 4.9 4.8 4.2 3.9 3.5

4.6 5.2 5.7 6.6 7.3 8.3 9.1 10.4 11.4 12.7 13.2 14.4 M.5 15.4 15 15.1 13.9 13.9 12.8 12.3 10.8 10.3 9 8.4 7.2 6.6 5.2 5.2 4.5 4.2 3.8

4.9 5.5 6.3 7.2 8 9.1 10.3 11.7 13.4 14.2 15.5 16.5 17.3 18.1 17.8 17.5 16.8 16.6 14.8 14.1 12.5 11.8 10 9.4 8 7.2 5.6 5.6 4.9 4.3 3.9

5.2 5.9 6.9 7.7 8.7 10.1 11.4 13.2 14.9 16.8 17.9 19.2 20 20.7 20.3 20.5 19.3 18.9 17.2 16.2 14.4 13.1 11.3 10.4 8.9 7.9 6.2 6 5.3 4.8 4.2

5.5 6.2 7.3 8.3 9.4 11 12.8 14.7 16.6 18.6 20 21.7 22.4 23.4 23 22.7 22 21.6 19.6 18.1 16.1 14.7 12.5 11.4 9.6 8.6 6.6 6.5 5.6 4.9 4.3

5.6 6.5 7.6 8.7 10 11.7 13.7 15.8 18.1 20.2 21.9 23.4 24.1 24.1 24.8 24.7 24.3 24 21.4 20.2 17.9 15.9 13.7 12.4 10.3 9.1 7 6.7 5.9 5.2 4.6

5.9 6.7 7.9 8.9 10.4 12.1 14.1 16.5 18.6 20.9 22.6 23.6 24.3 23.8 24.7 24.3 24.8 24.8 23.3 21.4 19.2 17.2 14.7 13.2 11 9.7 7.4 7 6.2 5.5 4.8

5.9 6.7 8 9 10.4 12.1 14.2 16.5 18.6 20.3 21.6 20.9 20.2 17 18.3 20.7 22.9 23.3 23.6 22 20.2 18.1 15.2 13.7 11.4 10.8 7.7 7.2 6.3 5.6 4.9

5.9 6.6 7.9 8.8 10.1 11.7 13.5 15.2 17.2 18.5 18.6 14.4 13.7 3.9 10.6 13 18.3 19.7 22.4 21.6 20.2 18.2 15.6 13.9 11.7 10.3 8 7.3 6.5 5.7 5

5.7 6.5 7.6 8.4 9.6 11 12.4 13.7 14.5 14.4 12.4 14.2 0.4 -6.7 -8.4 -0.5 8.9 12.8 19.6 19.9 19.2 17.6 15.5 13.7 10.7 10.3 8.3 7.4 6.6 5.7 5.2

5.5 6.2 7 7.7 8.7 9.6 10.6 11 10.1 9 5.5 -7.9-13.8-24.4-29.2-15.2 -5 4.2 13.9 15.9 16.9 16.2 14.7 13 10.7 10 8.3 7.3 6.6 5.7 5.2

5.2 5.7 6.5 7 7.4 7.9 7.7 7.2 4.9 0.5 -6.5-20.7-32.2 -36 -36 -36-23.3 -7.7 5 11.1 13.4 13.8 13.1 11.4 10.1 9.3 8 7.2 6.5 5.6 5

4.9 5.2 5.6 5.6 6 5.6 4.6 2.9-1.6-8.7-17.3-33.9 -36 -36 -36 -36 -36-20.5-5.3 3.8 8.7 10.3 11 10.1 9.1 8.7 7.7 6.9 6.3 5.5 4.9

4.3 4.3 4.8 4.6 4.5 3.5 1.6-1.2 -9-16.5-29.5 -36 -36 -36 -36 -36 -36 -33-15.8-3.3 3.2 6.2 8.4 8.2 8.3 7.7 7.2 6.5 6 5.3 4.9

3.9 3.9 3.9 3.5 2.9 1.6-1.9-5.6-14.7-23.6 -36 -36 -36 -36 -36 -36 -36 -36-26.3-11.1 -2.1 2.1 5.6 6.3 7.3 6.9 6.6 6 5.6 5 4.6

3.6 3.3 3.2 2.4 1.6 -0.4 -4.3 -11 -19-29.8 -36 -36 -36 -36 -36 -36 -36 -36-34.2-17.5 -7.7 -1.2 3.2 4.5 6 5.7 5.9 5.6 5.3 4.8 4.5

3.3 3.1 2.6 1.6 0.4 -1.6 -6 -12 -26-33.3 -36 -36 -36 -36 -36 -36 -36 -36 -36-24.8-10.7 -5.6 0.4 2.2 4.9 4.8 5.2 4.9 4.9 4.5 4.2

2.9 2.6 2 1.2 -0.7 -2.8 -7.3-14.5-23.3-34.7 -36 -36 -36 -36 -36 -36 -36 -36 -36-28.8-14.5 -7.7 -1.5 0.8 3.9 3.9 4.6 4.5 4.5 4.1 3.9

2.6 2.2 1.5 0.7-0.9-3.5 -8-14.8-23.4-34.5 -36 -36 -36 -36 -36 -36 -36 -36 -36-29.8-15.1 -9-3.2-0.5 3.1 3.1 4.1 3.9 4.1 3.9 3.8

2.4 2.1 1.2 0.4 -1.2 -3.5 -7.9-13.9-22.6 -32 -36 -36 -36 -36 -36 -36 -36 -36 -36-28.2-14.9 -9.4 -4.2 -0.8 2.4 2.5 3.5 3.5 3.6 3.5 3.5

2.2 1.8 1.1 0.4 -1.2 -3.3 -7.2-12.3 -19-27.7 -36 -36 -36 -36 -36 -36 -36 -36 -36 -25-13.7 -9 -4.3 -0.9 1.9 2.1 3.1 3.2 3.3 3.3 3.2

2.1 1.6 1.1 0.4-0.9-2.8-5.7-9.8-15.5-21.4-31.1-35.4 -36 -36 -36 -36 -36 -36-31.1-20.2 -11 -7.7-3.9-0.9 1.6 1.9 2.8 2.9 3.1 3.2 3.1

2.1 1.6 1.1 0.4-0.7-2.1-4.8-7.9-12.4-16.2-23.7-27.1-34.6 -36 -36 -36-34.5-26.4-22.4-14.2-8.6-5.7-2.6-0.7 1.6 1.9 2.6 2.8 2.9 2.9 2.9

1.9 1.6 1.1 0.7-0.5-1.5-3.5-5.7-8.9 -12-16.8-18.9-25.5 -27-29.4-26.5 -23-18.1-15.2 -11 -6.5-4.2-1.9-0.5 1.6 1.8 2.4 2.6 2.8 2.8 2.8

1.9 1.6 1.2 0.9 0.4-0.7-2.4-3.9-6.5-8.2 -11-12.3-16.1-17.9-18.9-16.4 -16-12.1 -9-7.3-4.2-2.6-1.2 0.4 1.6 1.8 2.4 2.5 2.6 2.6 2.6

1.9 1.6 1.4 1.1 0.4 -0.5 -1.2 -2.2 -4.1 -5.2 -7.2 -8.2-10.3-10.7-12.4-10.7 -9.8 -7.2 -6 -4.6 -2.5 -1.4 -0.5 0.8 1.6 1.9 2.2 2.4 2.5 2.5 2.5

1.9 1.8 1.5 1.2 0.8 0.4 -0.5 -1.2 -2.4 -2.9 -4.3 -4.6 -6.2 -6.3 -7.3 -6.7 -5.9 -4.9 -3.5 -2.5 -1.2 -2.7 0.4 0.9 1.8 1.9 2.2 2.4 2.5 2.5 2.4

1.9 1.8 1.6 1.5 1.1 0.8 0.4 -0.5 -1 -1.6 -2.4 -2.6 -3.8 -3.9 -4.3 -3.5 -3.3 -2.4 -1.6 -1.1 -0.5 0.4 0.8 1.4 1.9 2.1 2.2 2.4 2.4 2.4 2.4

1.9 1.9 1.7 1.6 1.4 1.1 0.7 0.4 -0.5 -0.5 -1.1 -1.1 -1.9 -2.2 -2.1 -1.8 -1.6 -0.9 -0.7 -0.5 0.4 0.8 1.2 1.6 1.9 2.1 2.2 2.4 2.4 2.4 2.4

1.9 1.9 1.8 1.6 1.5 1.4 1.1 0.8 0.4 0.4 -0.5 -0.5 -0.7 -0.8 -1 -0.7 -0.7 -0.4 0.4 0.5 0.9 1.2 1.5 1.8 2.1 2.1 2.2 2.2 2.2 2.2 2.2

1.9 1.9 1.9 1.8 1.6 1.5 1.4 1.2 0.9 0.8 0.5 0.4 0.4 -0.5 -0.5 -0.4 0.4 0.5 0.8 0.9 1.2 1.5 1.6 1.9 2.1 2.1 2.2 2.2 2.2 2.2 2.2

1.9 1.9 1.9 1.8 1.8 1.6 1.5 1.5 1.2 1.2 0.9 0.8 0.5 0.4 0.4 0.4 0.5 0.9 1.1 1.4 1.5 1.6 1.8 1.9 2.1 2.1 2.2 2.2 2.2 2.1 2.1

1.9 1.9 1.9 1.9 1.8 1.8 1.6 1.6 1.5 1.4 1.2 1.1 0.9 0.8 0.8 0.8 0.9 1.2 1.4 1.6 1.6 1.9 1.9 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1

Training Set 2: 105mm HEAT

104

3.2 3.6 4.2 4.8 5.5 6.5 7.7 9.3 10.6 12.4 14.7 17.2 19.5 21.4 21.7 22.6 20.9 19.3 17.8 14.9 13 11.1 9.4 8.3 6.9 5.9 5 4.3 3.9 3.5 2.9

3.3 3.9 4.3 5 5.7 6.9 8.3 10 11.8 14.1 17.3 20.5 23 25.5 26.1 27.1 25.3 22.9 20.7 17.5 14.9 12.7 10.7 9 7.6 6.3 5.5 4.6 4.1 3.6 3.1

3.5 3.9 4.5 5.2 6 7.3 8.7 10.6 12.7 15.2 8.9 22.3 25.7 28.8 29.8 30.9 29.2 26.7 23.6 19.9 16.8 13.9 11.4 9.8 8.3 6.9 5.7 4.9 4.3 3.8 3.3

3.6 4.1 4.6 5.5 6.2 7.4 9 11 13.1 15.9 19.7 23.6 27.5 30.5 32.2 32.6 31.5 28.7 26 21.4 17.9 15.1 12.3 10.6 8.7 7.2 6 5.2 4.5 3.9 3.3

3.6 4.2 4.8 5.5 6.3 7.6 8.9 11 13.1 15.9 19.2 23 27.1 29.6 31.8 32.2 31.2 29.2 26.7 22.2 18.3 15.5 12.7 10.8 9 7.6 6.2 5.5 4.6 4.2 3.5

3.6 4.1 4.6 5.5 6.2 7.3 8.4 10.4 12.1 14.8 17.6 20 24 24.8 28.5 28.8 28.4 27 25.5 21.9 18.3 15.5 12.8 10.8 9.1 7.6 6.3 5.5 4.8 4.2 3.5

3.5 4.1 4.6 5.2 5.7 6.9 7.9 9.4 10.6 12.4 13.5 13.7 15.2 14.8 19.3 19.9 22.9 22.7 22.4 19.9 17.5 15.1 12.5 10.7 9 7.6 6.5 5.5 4.8 4.3 3.6

3.5 3.9 4.3 4.9 5.5 6.2 7.2 7.9 8.2 9.4 9.3 8.2 6 2.4 5.5 6.6 13.5 15.8 17.3 17.5 13.9 13.9 12 10.3 9 7.6 6.3 5.5 4.8 4.3 3.6

3.3 3.8 4.2 4.5 4.8 5.5 5.7 5.6 5.6 4.9 2.8 -0.7 -5-13.5 -6.9 -6.5 1.6 6.9 12 13.1 13.5 12.3 11.1 9.6 8.4 7.2 6.2 5.5 4.8 4.2 3.6

3.3 3.6 3.9 4.1 4.2 4.3 4.2 3.1 2.8 0.4 -3 -8.9-17.5 -26 -27-21.9-10.3 -2.1 9.3 7.9 10.7 10 9.6 8.7 7.9 6.7 6 5.3 4.6 4.2 3.6

3.1 3.3 3.5 3.6 3.3 3.3 2.8 1.4-0.7-3.6-9.4-18.1 -28-35.5 -36-35.6-23.1 -13-4.3 3.6 7.6 7.6 8 7.6 7.3 6.3 5.6 5 4.5 4.1 3.6

2.9 3.1 3.2 3.3 2.8 2.4 1.2 -0.5 -3.9 -8.7-16.2-26.7 -36 -36 -36 -36 -35-23.7 -12 -1.9 3.3 5 6.5 6.2 6.5 5.7 5.3 4.8 4.3 3.9 3.5

2.8 2.9 2.9 2.8 2.4 1.5 0.4-2.1 -6.3-12.1-21.3-33.3 -36 -36 -36 -36 -36-31.8-19.3-6.7-0.5 2.8 4.8 5.3 5.7 5.3 5 4.5 4.2 3.8 3.5

2.8 2.6 2.6 2.4 1.6 0.9 -0.7 -3.3 -8.2-14.8-24.8-35.4 -36 -36 -36 -36 -36 -36 -25-10.8 -3.3 0.7 3.5 4.2 4.9 4.6 4.6 4.3 4.1 3.6 3.3

2.6 2.5 2.6 2.2 1.5 0.4 -1.1 -3.8 -8.9-16.8-25.8-35.6 -36 -36 -36 -36 -36 -36-29.4-14.7 -5.7 -0.8 2.1 3.3 4.3 4.3 4.2 4.1 3.9 3.5 3.3

2.6 2.4 2.4 2.1 1.2 0.4 -1.1 -3.8 -8.7-15.5-23.6-34.5 -36 -36 -36 -36 -36 -36-29.8-15.1 -6.7 -1.6 1.5 2.8 3.8 3.9 3.9 3.8 3.8 3.3 3.2

2.5 2.4 2.2 1.9 1.1 0.4-0.8-3.6-7.3-13.5 -20-30.6 -36 -36 -36 -36 -36-34.5-26.4-13.8-6.3-1.6 1.2 2.6 3.3 3.6 3.8 3.6 3.5 3.3 3.1

2.5 2.4 2.2 1.9 1.1 0.7-0.7-2.8 -6-10.1-16.2-23.6-32.6 -36 -36 -36-35.7 -26-20.9-10.3-4.3-0.7 1.5 2.6 3.3 3.5 3.6 3.5 3.3 3.2 3.1

2.4 2.2 2.1 1.9 1.2 0.9-0.5-1.6-4.2-6.6-11.4-15.8-22.9-23.8-30.4-29.2-25.3-14.8-13.9-5.6-2.1 0.5 1.9 2.9 3.3 3.5 3.5 3.3 3.3 3.1 2.9

2.2 2.2 2.1 1.9 1.4 1.2 0.4-0.7-2.1 -3.9-7.4 -10-13.2-13.8-16.2 -13-12.4-6.2-6.2-1.2 0.4 0.9 2.6 3.2 3.3 3.5 3.3 3.3 3.2 3.1 2.8

2.2 2.1 2.1 1.9 1.5 1.2 0.5 0.4 -1.1 -2.2 -4.1 -5 -7.3 -6 -7.7 -4.3 -3.9 -0.5 -0.5 1.5 2.4 2.9 3.3 3.5 3.5 3.3 3.3 3.2 3.1 2.8 2.8

2.1 2.1 1.9 1.8 1.4 1.2 0.8 0.4 -0.7 -1.6 -2.6 -3.5 -4.5 -4.9 -4.1 -2.4 -0.5 1.5 2.5 3.2 3.5 3.5 2.5 3.5 3.5 3.3 3.2 3.1 2.9 2.8 2.8

2.1 1.9 1.8 1.6 1.2 1.1 0.4 -0.4 -0.8 -2.1 -3.1 -4.5 -5.7 -7.9 -6.3 -5.3 -1.5 -0.5 1.9 2.8 2.3 3.3 2.3 3.3 3.3 3.2 3.1 2.9 2.8 2.6 2.6

1.9 1.9 1.6 1.5 0.9 0.5 0.4 -0.8 -1.5 -3.3 -5.2 -7.7 -9.3-14.4-11.4-11.4 -6.7 -4.8 -0.8 0.8 2.2 2.6 2.9 2.8 2.7 2.8 2.8 2.6 2.6 2.5 2.6

1.8 1.6 1.6 1.4 0.8 0.4-0.5-1.6-3.1 -5.6 -8-11.4-15.2-20.6-19.7-20.9-12.8-9.6-5.2-1.5 0.4 1.2 1.9 2.2 1.5 2.6 2.6 2.5 2.5 2.4 2.5

1.6 1.6 1.4 1.1 0.4-0.5 -1-2.5-4.2-7.6-10.7-14.7-21.6-28.1-27.9-27.4-20.7-15.2-9.8-4.9-1.6-0.5 0.7 1.5 1.1 2.1 2.2 2.2 2.4 2.2 2.4

1.6 1.5 1.2 0.9 0.4-0.7-1.6-3.3-3.5-9.7-13.7-17.5-25.7-32.6-33.5-33.3 -27-20.7-13.9 -8-3.9-1.5-0.5 0.8 1.5 1.6 1.9 2.1 2.1 2.1 2.2

1.6 1.4 1.1 0.7-0.5-0.9-2.2-3.9-6.9 -11-15.2-19.2-29.9 -35 -36 -36-31.2-25.1-18.1-10.7-6.2-3.1-1.1-0.4 0.9 1.2 1.6 1.8 1.9 1.9 2.1

1.5 1.2 0.9 0.5-0.5-1.2-2.5-4.3 -7 -12-16.8-20.6-30.4-35.6 -36 -36 -33-26.7-20.2-12.4-7.4-4.1-1.9-0.7 0.4 0.9 1.4 1.6 1.8 1.8 1.9

1.5 1.1 0.8 0.4-0.5-1.4-2.8-4.3-7.6 -12-16.9-20.7-29.8-34.7 -36-35.6-32.8-26.3-20.2-12.8-8.2-4.5-2.4-0.8-0.4 0.7 1.1 1.6 1.6 1.6 1.8

1.4 1.1 0.8 0.4-0.5-1.4-2.5-4.2-7.2 -11-15.4-19.2-26.7-31.6-34.5-32.8-30.6 -24 -19-12.3 -8-4.6-2.6-0.9-0.5 0.4 0.9 1.2 1.5 1.6 1.6

1.2 1.1 0.8 0.4-0.5-1.2-2.4-3.9-6.3-9.6-13.4-15.9-22.4-26.8-31.2-28.1-25.5-20.7-15.2-10.7-7.4-4.3-2.6-1.1-0.5 0.4 0.8 1.1 1.4 1.5 1.6

1.2 1.1 0.8 0.4 -0.5 -1.1 -2.1 -3.2 -5.5 -7.9 -11-12.1-18.1-28.2-23.3-21.4-19.7-17.5-13.2 -9.1 -6.6 -3.8 -2.6 -0.9 -0.5 0.4 0.8 1.1 1.2 1.4 1.6

1.2 1.1 0.8 0.4 -0.5 -0.8 -1.5 -2.5 -4.2 -6 -8.4 -9.6 -13-15.2-16.6-16.1-14.4-13.4-10.3 -7.3 -5.3 -3.3 -2.1 -0.8 -0.5 0.4 0.7 0.9 1.2 1.4 1.5

1.2 1.1 0.8 0.7 0.4 -0.5 -1.1 -1.8 -3.2 -4.5 -5.9 -7.3 -9.3-10.1 -11-11.1-10.1 -9.4 -7.9 -5.6 -4.1 -2.6 -1.6 -0.7 -0.5 0.4 0.8 0.9 1.2 1.4 1.5

Test Set: 3-5in Rocket

105

1.6 1.8 1.9 2.1 2.2 2.6 2.8 3.1 3.2 3.3 3.8 3.9 3.8 3.9 3.9 3.8 3.6 3.3 3.2 3.1 2.8 2.6 2.5 2.2 2.1 1.9 1.9 1.6 1.5 1.5 1.4

1.6 1.9 2.1 2.4 2.5 2.8 3.2 3.3 3.8 4.1 4.5 4.6 4.8 4.8 4.8 4.6 4.5 4.1 3.8 3.5 3.3 2.9 2.8 2.5 2.2 2.1 1.9 1.6 1.6 1.5 1.5

1.8 2.1 2.2 2.6 2.8 3.2 3.5 3.9 4.3 4.8 5.2 5.7 5.6 5.9 5.6 5.7 5.2 5.2 4.3 4.2 3.8 3.3 3.1 2.8 2.4 2.2 1.9 1.9 1.6 1.6 1.5

1.8 2.2 2.4 2.8 3.1 3.5 3.9 4.5 5.2 5.6 6.5 7 6.9 7.2 7.2 6.7 6.6 6.3 5 5 4.3 3.8 3.3 3.1 2.6 2.4 2.1 1.9 1.8 1.6 1.5

1.9 2.4 2.6 3.1 3.3 3.9 4.5 5.2 6.2 6.9 7.7 8.4 8.6 8.9 8.9 8.4 7.9 7.4 6.6 5.9 5 4.3 3.8 3.3 2.9 2.6 2.2 2.1 1.9 1.6 1.5

2.1 2.4 2.8 3.2 3.8 4.5 5 5.9 7.2 8 9.4 10.6 10.1 11.1 11 11.1 9.7 9 7.7 6.7 5.7 4.9 4.2 3.8 3.2 2.6 2.4 2.2 1.9 1.8 1.6

2.1 2.5 2.9 3.5 3.9 4.9 5.6 6.7 8 9.4 11.3 12.7 13 14.1 13.7 13.5 11.7 10.7 9.1 7.9 6.6 5.5 4.6 3.9 3.3 2.9 2.5 2.2 2.1 1.8 1.6

2.1 2.6 2.9 3.5 4.1 5.2 5.9 7.4 8.9 10.7 12.8 15.2 15.2 17.3 16.2 16.5 13.9 13 10.4 9 7.4 6.2 5 4.3 3.5 3.1 2.6 2.4 2.1 1.9 1.6

2.1 2.6 3.1 3.5 4.2 5.3 6.3 7.7 9.7 11.7 14.9 17.6 18.1 20.6 21 19.6 16.9 14.9 12.3 10 8.3 6.6 5.5 4.5 3.8 3.2 2.6 2.4 2.1 1.9 1.6

2.1 2.6 2.9 3.5 4.1 5.3 6.2 7.9 10 12.4 15.9 18.9 20.6 23.3 23 22 18.6 16.9 13.4 11 8.9 7 5.6 4.6 3.9 3.3 2.8 2.5 2.2 1.9 1.7

2.1 2.4 2.8 3.3 3.9 4.9 5.7 7.4 9.4 11.5 15.5 18.3 21.2 23.4 24.3 23.3 20.5 17.5 14.2 11.3 9.1 7.2 5.9 4.8 3.9 3.3 2.9 2.5 2.2 1.9 1.8

1.9 2.2 2.5 3.1 3.5 4.3 5 6.2 7.9 9.7 13.2 14.9 19.2 20.5 22.9 21.6 20.2 16.2 13.9 10.8 9 6.9 5.7 4.6 3.9 3.2 2.8 2.4 2.2 1.9 1.6

1.8 2.1 2.2 2.5 2.4 3.5 3.9 4.5 5.6 6 8.3 9 13.8 13.5 15.9 16.4 16.6 13.2 12.4 9.8 8.4 6.3 5.5 4.3 3.8 3.1 2.6 2.4 2.1 1.8 1.6

1.6 1.8 1.8 2.1 2.1 2.1 2.5 1.9 1.8 1.2 2.1 -0.8 -1.2 1.9 5.3 6.3 9.7 8.6 10.1 7.4 7 5.3 4.8 3.9 3.3 2.8 2.6 2.2 2.1 1.8 1.6

1.4 1.5 1.4 1.4 1.2 0.5 0.8-1.2-2.4-3.2-7.3-13.5-9.6-12.7-7.2-4.1 4.2 3.9 6.2 4.9 5 3.9 4.2 3.3 3.1 2.6 2.4 2.1 1.9 1.6 1.6

1.1 1.2 0.9 0.8 0.5-0.8-1.1 -3.9-5.2-7.9-14.5-20.7-22.3-27.7-20.6-14.9-7.2-3.9 0.8 1.5 2.8 2.8 3.1 2.8 2.6 2.2 2.2 1.9 1.9 1.6 1.6

0.9 1.1 0.5 0.4-0.5-1.8-2.6-5.7-8.3-13.8-20.5-28.4-31.6-33.7-29.6-23.3-14.7 -9-3.3-1.1 0.4 1.1 1.9 1.9 2.1 1.9 1.9 1.8 1.6 1.5 1.6

0.8 1.8 0.4-0.4-0.8-2.4-3.9-7.2 -11-16.9-24.3-31.8 -35 -36-34.3 -29-19.3-12.4-6.9-3.3-1.2 0.4 0.9 1.4 1.6 1.6 1.6 1.5 1.6 1.4 1.5

0.7 0.5 0.4-0.5-1.2-3.1-4.5-7.9-11.8-17.9-26.5-32.6-35.7 -36 -36-30.9-23.1-15.4-9.6-5.9-2.9-1.1 0.4 0.5 1.1 1.2 1.5 1.4 1.5 1.2 1.5

0.5 0.4-0.4-0.7-1.5-3.3 -5-7.4-12.4-17.5 -27-31.5-35.2 -36-35.9-30.6-24.3-16.2 -11-6.9-3.9-1.6-0.7 0.4 0.8 0.9 1.2 1.2 1.4 1.2 1.4

0.4 0.4-0.5-0.7-1.6-3.3-4.9-7.3-11.7-15.6-23.7-27.5-32.6-33.6-33.9-27.7-22.9-15.8-11.1-7.2-4.3-2.2-0.9-0.5 0.5 0.8 0.9 1.1 1.2 1.2 1.2

0.4 0.4 -0.5 -0.7 -1.6 -2.9 -4.5 -6.5-10.4-13.2-19.6-22.6-27.5-28.5-29.6-22.7-19.9-14.1-10.3 -6.7 -4.5 -2.4 -1.1 -0.5 0.4 0.5 0.8 0.9 1.1 1.1 1.2

0.4 0.4-0.5-0.7-1.4-2.6-4.2-5.5-8.7 -11-15.8-17.6 -22-21.3 -23-17.1-15.8-11.3-8.9 -6-4.2-2.2-1.2-0.5 0.4 0.5 0.8 0.9 1.1 1.1 1.2

0.4 0.4 -0.5 -0.7 -1.2 -2.1 -3.3 -4.3 -6.7 -8-12.1-12.3-16.2-16.1-16.4-13.2-12.3 -8.9 -7.3 -4.9 -3.6 -1.9 -1.1 -0.5 0.4 0.5 0.8 0.9 0.9 1.1 1.1

0.5 0.4 -0.4 -0.5 -0.8 -1.6 -2.6 -3.3 -5 -6.5 -9.3 -9.3 -11-11.4 -12 -9.6 -9 -6.7 -5.5 -3.9 -2.8 -1.5 -0.9 -0.5 0.4 0.5 0.8 0.9 0.9 1.1 1.1

0.5 0.5 0.4 -0.4 -0.7 -1.1 -2.1 -2.2 -3.9 -4.5 -7 -6.7 -8.4 -8.3 -8.7 -6.9 -6.6 -4.9 -4.1 -2.9 -2.1 -1.1 -0.7 -0.5 0.4 0.5 0.8 0.9 0.9 1.1 1.1

0.5 0.5 0.4 0.4 -0.5 -0.7 -1.4 -1.6 -2.8 -3.3 -4.6 -4.8 -5.7 -5.5 -6 -4.8 -4.5 -3.5 -2.9 -2.1 -1.5 -0.8 -0.5 0.4 0.4 0.7 0.8 0.9 0.9 1.1 1.1

0.5 0.7 0.4 0.4 -0.5 -0.5 -0.8 -0.9 -1.8 -2.1 -3.1 -3.1 -3.5 -3.5 -3.8 -3.2 -3.2 -2.5 -2.1 -1.4 -0.9 -0.5 -0.5 0.4 0.4 0.8 0.8 0.9 0.9 1.1 1.1

0.7 0.8 0.5 0.5 0.4 0.4 -0.5 -0.7 -1.1 -1.2 -1.8 -1.8 -2.6 -2.2 -2.5 -1.9 -2.1 -1.5 -1.2 -0.8 -0.7 -0.5 0.4 0.4 0.5 0.8 0.8 0.9 0.9 1.1 1.1

0.8 0.8 0.5 0.7 0.4 0.4 -0.5 -0.5 -0.7 -0.7 -0.9 -0.9 -1.4 -1.4 -1.5 -1.1 -1.1 -0.8 -0.8 -0.5 -0.5 0.4 0.4 0.5 0.7 0.8 0.9 0.9 0.9 1.1 1.1

0.8 0.9 0.7 0.8 0.5 0.5 0.4 0.4 -0.5 -0.5 -0.7 -0.5 -0.7 -0.7 -0.8 -0.5 -0.7 -0.5 -0.5 0.4 0.4 0.4 0.4 0.7 0.8 0.8 0.9 0.9 1.1 1.1 1.1

0.9 0.9 0.8 0.9 0.7 0.7 0.4 0.4 0.4 0.4 -0.4 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.4 0.4 0.4 0.4 0.5 0.7 0.8 0.9 0.9 0.9 1 1.1 1.1 1.1

0.9 0.9 0.8 0.9 0.8 0.8 0.7 0.7 0.5 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.5 0.7 0.8 0.8 0.9 0.9 0.9 1.1 1.1 1.1 1.1

1.1 1.1 0.8 1.1 0.8 0.9 0.8 0.8 0.7 0.7 0.5 0.5 0.4 0.4 0.4 0.4 0.4 0.5 0.5 0.7 0.7 0.8 0.8 0.9 0.9 0.9 0.9 1.1 1.1 1 1.1

1.1 1.1 0.9 1.1 0.9 1.1 0.9 0.9 0.8 0.8 0.8 0.8 0.5 0.7 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.8 0.9 0.9 0.9 1.1 1.1 1.1 1.1 1.1 1.1

Test Set: 60mm Mortar

106

2.5 2.6 3.1 3.3 3.9 4.2 5 5.6 6.2 6.6 7 7.6 7.9 8 8.7 8.2 7.6 7 6.7 6.2 5.7 5.2 4.9 4.2 3.9 3.3 3.2 2.8 2.6 2.4 2.2

2.6 3.1 3.3 3.8 4.2 4.6 5.7 6.2 7.2 7.7 8.6 9.4 9.8 10 10.7 10 9.4 8.7 8.3 7.4 6.7 5.9 5.5 4.8 4.3 3.8 3.3 2.9 2.8 2.5 2.2

2.8 3.2 3.5 4.2 4.8 5.3 6.6 7.2 8.4 9.4 10.1 11.7 12.3 12.5 13.5 13 11.3 10.7 10 8.7 8 7 6.5 5.5 4.9 4.2 3.8 3.3 3.1 2.6 2.4

3.1 3.5 3.9 4.6 5 6 7.3 8.4 9.7 11.4 12.3 15.2 15.5 16.4 17.1 15.8 13.9 13.1 12 10.7 9.4 8.4 7.2 6.2 5.5 4.6 4.2 3.5 3.3 2.8 2.5

3.2 3.6 4.1 4.9 5.5 6.7 8.2 9.6 11.1 13.2 14.9 17.9 19.2 20.2 22 19.9 17.8 16.4 14.4 12.7 11 9.4 8.3 7 6.2 5.2 4.3 3.9 3.5 3.1 2.6

3.3 3.8 4.3 5 6 7.3 9 10.6 12.3 14.8 17.6 21.4 24 25.3 26.7 24.8 22.4 20.6 17.3 15.1 13 10.8 9.3 7.9 6.6 5.6 4.8 4.1 3.6 3.2 2.8

3.3 3.9 4.5 5.3 6.3 7.7 9.4 11.4 13.5 16.8 20.7 24.7 28.8 30.8 32 30.6 27.2 24.3 20.9 17.5 14.5 12.1 10.3 8.7 7.3 6 5 4.3 3.8 3.3 2.9

3.3 3.9 4.5 5.5 6.5 7.9 9.8 11.8 14.2 17.8 22.2 26.5 31.2 33.6 35.2 34 31.1 27.9 23.7 19.7 16.6 13.7 11.3 9.4 7.9 6.3 5.3 4.6 3.9 3.5 3.1

3.5 4.1 4.5 5.5 6.3 7.9 9.6 11.7 14.5 17.6 22.2 26.5 31.8 33.6 35.4 35 33.5 30.5 26.1 21.6 17.9 14.7 12.1 9.8 8.2 6.6 5.5 4.8 4.1 3.5 3.1

3.3 3.9 4.3 5.3 6.2 7.7 9 11.1 13.4 16.4 19.6 23 28.2 30.4 21.2 32.6 33.2 30.5 26.8 22.4 18.9 15.2 12.7 10.1 8.4 6.7 5.6 4.9 4.2 3.6 3.1

3.2 3.8 4.2 4.9 5.5 7 7.9 9.8 11.3 13.1 14.5 13.7 18.2 20.3 20 23.3 29.5 27.1 25.8 21.9 19 15.1 12.8 10 8.4 6.9 5.6 4.9 4.2 3.6 3.2

3.1 3.5 3.9 4.5 4.9 6 7 7.7 8.4 9.3 8.4 6.2 5.9 4 3.9 8.3 19.7 19.5 21.9 19.6 17.5 14.1 12 9.6 8.3 6.6 5.6 4.8 4.2 3.5 3.2

2.8 3.2 3.3 3.9 4.2 4.6 4.8 5.6 4.2 4.6 0.5 -2.4 -6.7 -13-11.7 -6.8 6.7 10.4 16.9 16.1 14.7 12.7 11 8.9 7.6 6.2 5.3 4.5 4.1 3.5 3.1

2.5 3.1 3.1 3.3 3.3 3.3 2.9 2.6 0.8 -0.7 -8.9-13.2-21.6-30.4-28.5-20.7 -7.2 0.9 8.7 9.8 11.1 10 9.3 7.7 6.9 5.7 4.9 4.3 3.9 3.3 3.1

2.2 2.6 2.4 2.6 2.1 2.2 0.4 0.4 -2.4 -6.7 -16.4 -20.9 -23.5 -36 -36 -34 -20 -9.3 0.4 4.2 6.2 6.9 7 6.5 5.9 5 4.5 3.9 3.6 3.2 2.8

1.9 2.2 1.8 2.1 0.9 0.8-1.2-2.5 -6-11.3-22.9-28.1 -36 -36 -36 -36-30.9-19.2-8.9-1.4 2.2 4.1 5 4.9 4.8 4.3 4.1 3.5 3.3 2.9 2.8

1.6 1.9 1.5 1.5 0.4-0.5-3.1 -4.8-9.4-15.1-27.5 -30 -36 -36 -36 -36 -36-29.4-15.4-8.2-0.9 0.4 3.3 2.8 3.5 3.5 3.5 3.1 3.1 2.6 2.6

1.5 1.6 1.1 0.9 -0.7 -1.1 -4.2 -6.7-10.6-17.5-29.1 -36 -36 -36 -36 -36 -36-32.8 -22-11.7 -5.7 -1.8 0.5 1.6 2.6 2.6 2.9 2.6 2.8 2.5 2.4

1.4 1.4 0.8 0.5 -0.8 -1.8 -4.9 -7.7-12.3-18.9 -30 -36 -36 -36 -36 -36 -36 -36-26.7-17.1 -9.3 -4.9 -1.4 0.4 1.5 1.8 2.4 2.2 2.5 2.2 2.2

1.2 1.1 0.4 0.4 -1.2 -2.5 -5.5 -8.6 -14-19.5 -31 -36 -36 -36 -36 -36 -36 -36-28.9 -19-11.3 -6.3 -2.8 -0.9 0.5 1.2 1.6 1.8 2.1 2.1 2.1

1.1 0.9 0.4 0.4-1.4-2.8-5.6-8.4-13.4 -19-30.5 -36 -36 -36 -36 -36 -36 -36-30.1-20.2-12.8-7.4-4.1 -1.6-0.4 0.5 1.4 1.5 1.8 1.8 1.9

0.9 0.9 0.4-0.5-1.5-2.8-5.5-8.4-13.2-17.3-27.9-34.7 -36 -36 -36 -36 -36-35.9-28.8-19.7-13.2-7.9-4.6-2.1-0.7 0.4 0.9 1.1 1.6 1.6 1.6

0.9 0.8 0.4-0.5-1.5-2.6-5.2-7.6-11.3-15.6-24.3-30.4 -36 -36 -36 -36 -36-32.8-25.8-18.2-12.3-7.6-4.3-2.4-0.9 0.4 0.8 0.9 1.5 1.5 1.6

0.9 0.7 0.4-0.5-1.2-2.1-4.6-6.7 -10-12.4 -20 -25 -33-34.2 -36-34.6-32.5-28.1-20.9-15.6-10.7-6.6-4.3-2.5-0.9-0.5 0.5 0.8 1.2 1.4 1.5

0.9 0.8 0.4 0.4 -0.9 -1.5 -3.8 -5.6 -8.7 -9.8 -16 -19-26.5-28.2-31.3-28.4-27.2 -21-16.5-12.4 -8.9 -5.7 -3.8 -2.1 -0.8 -0.5 0.5 0.8 1.2 1.2 1.4

0.9 0.8 0.4 0.4-0.8-0.9-3.2-4.5-6.6-8.2-12.1-14.8-19.2-20.3-23.3-20.9-19.2-16.6-12.8 -10-7.2-4.5-3.2-1.8-0.8-0.5 0.5 0.8 1.1 1.2 1.6

0.9 0.8 0.4 0.4-0.7-0.7-2.4-3.2-5.2 -6-9.1 -10-13.9-15.5-15.8-15.2-13.9-12.3 -10-7.6-5.6-3.6-2.5-1.4-0.7 0.4 0.5 0.8 1.1 1.2 1.2

0.9 0.9 0.4 0.5 -0.5 -0.5 -1.6 -2.5 -3.8 -4.3 -6.2 -7.3 -9.7 -10-11.1 -10 -9.7 -8.3 -7.2 -5.3 -4.2 -2.6 -1.9 -0.9 -0.5 0.4 0.5 0.8 1.1 1.1 1.2

0.9 1 0.5 0.8 0.4 0.4 -0.9 -1.5 -2.2 -2.2 -4.3 -4.6 -6.7 -7.2 -7.7 -7 -6.7 -5.7 -4.9 -4.1 -2.9 -1.8 -1.2 -0.7 -0.4 0.4 0.7 0.8 1.1 1.1 1.2

1.1 1.1 0.8 0.9 0.4 0.7 -0.7 -0.8 -1.5 -1.6 -2.6 -3.3 -4.5 -4.9 -4.6 -4.3 -4.5 -3.9 -3.3 -2.4 -1.9 -1.1 -0.8 0.5 0.4 0.4 0.8 0.9 1.1 1.1 1.2

1.1 1.1 0.8 0.8 0.4 0.4 -0.5 -0.5 -0.8 -0.8 -1.6 -2.1 -2.8 -3.6 -2.8 -2.9 -2.5 -2.5 -1.9 -1.6 -1.1 -0.5 -0.5 0.4 0.4 0.7 0.9 0.9 1.1 1.2 1.2

1.1 1 0.9 0.8 0.7 0.5 0.4 0.4 -0.5 -0.5 -0.8 -0.9 -1.6 -1.6 -1.8 -1.6 -1.5 -1.2 -0.9 -0.8 -0.5 -0.5 0.4 0.4 0.7 0.8 0.9 1 1.2 1.2 1.2

1.2 1.1 1 0.9 0.8 0.5 0.5 0.5 0.4 0.4 -0.5 -0.7 -0.8 -0.7 -0.8 -0.7 -0.7 -0.8 -0.5 -0.5 -0.5 0.4 0.4 0.5 0.8 0.8 1.1 1.1 1.2 1.2 1.2

1.2 1.1 1.1 0.9 0.9 0.8 0.8 0.5 0.4 0.4 0.4 0.4 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.4 0.4 0.4 0.4 0.7 0.7 0.9 0.9 1.1 1.1 1.2 1.2 1.2

1.2 1.2 1.2 0.9 0.9 0.9 0.9 0.8 0.7 0.7 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.4 0.5 0.7 0.8 0.8 0.9 1.1 1.1 1.2 1.2 1.2 1.2

Test Set: 81mm Mortar

107

2.2 2.2 2.4 2.4 2.5 2.5 2.6 2.6 2.6 2.6 2.6 2.8 2.8 2.9 3.1 3.1 3.2 3.3 3.2 3.3 3.2 3.1 3.1 2.9 2.9 2.8 2.6 2.6 2.5 2.4 2.2

2.4 2.4 2.5 2.6 2.6 2.6 2.6 2.6 2.8 2.8 2.9 2.9 3.1 3.2 3.2 3.3 3.5 3.6 3.6 3.6 3.5 3.5 3.3 3.3 3.2 3.1 2.9 2.8 2.6 2.5 2.4

2.5 2.5 2.6 2.6 2.8 2.8 2.8 2.8 2.9 2.9 2.9 3.1 3.2 3.3 3.5 3.8 3.9 3.9 4.1 3.9 3.9 3.9 3.8 3.6 3.5 3.3 3.2 3.1 2.9 2.6 2.5

2.6 2.6 2.8 2.8 2.9 2.9 2.9 2.9 2.9 2.9 3.1 3.2 3.3 3.5 3.8 4.1 4.3 4.3 4.5 4.6 4.3 4.3 4.2 4.1 3.9 3.8 3.5 3.3 3.1 2.9 2.6

2.8 2.8 3.1 3.1 3.1 3.1 3.1 3 2.9 2.9 3.1 3.2 3.3 3.8 4.1 4.3 4.8 4.9 5 5 4.9 5 4.8 4.5 4.3 4.2 3.9 3.6 3.3 3.2 2.9

2.9 3.1 3.2 3.2 3.2 3.2 3.1 3.1 2.8 2.8 2.8 2.9 3.2 3.8 4.3 4.8 5.3 5.6 5.7 5.9 5.5 5.7 5.3 5 4.8 4.6 4.3 4.1 3.8 3.5 3.2

3.1 3.2 3.3 3.3 3.3 3.2 3.2 2.9 2.6 2.4 2.4 2.4 2.9 3.5 4.3 5.2 5.7 6.2 6.6 6.7 6.5 6.6 6 5.9 5.3 5.2 4.8 4.5 4.1 3.8 3.3

3.2 3.3 3.5 3.5 3.5 3.3 3.2 2.8 2.4 1.9 1.6 1.6 1.8 2.6 3.9 5 6 6.7 7.2 7.4 7.2 7.3 6.7 6.5 6 5.6 5.2 4.8 4.3 4.1 3.6

3.5 3.6 3.6 3.8 3.6 3.3 3.1 2.5 1.9 0.8 0.4 -0.5 -0.4 0.7 2.4 4.2 5.6 7.2 7.9 8.4 8.3 8.4 7.9 7.3 6.7 6.3 5.7 5.3 4.8 4.3 3.9

3.6 3.9 3.9 3.9 3.8 3.5 3.1 2.2 1.2 -0.8 -1.6 -3.1 -3.5 -3.1 -0.9 1.8 4.2 6.9 8.4 9.4 9.6 9.7 8.9 8.4 7.6 7.2 6.3 5.9 5.2 4.8 4.1

3.9 4.1 4.2 4.2 3.9 3.6 3.1 2.1 0.8 -1.5 -4.1 -6.3 -8.7 -8 -6 -1.6 2.2 6.7 9.1 10.8 11 11 10.1 9.7 8.4 7.7 6.9 6.3 5.6 5.2 4.3

4.1 4.2 4.3 4.3 4.2 3.9 3.2 1.9 0.4 -2.9 -6.7-10.3-13.7-14.1-11.8 -5.6 0.7 7.7 11 13.5 12.8 12.7 11.7 10.7 9.3 8.6 7.6 6.9 6 5.5 4.6

4.3 4.5 4.6 4.6 4.5 4.2 3.3 2.1 0.5 -3.8 -8.4-13.1-17.8-19.6-16.1 -7.2 0.9 10.3 13.7 15.8 15.1 14.7 13 11.8 10.1 9.4 8.3 7.3 6.6 5.9 4.9

4.5 4.6 4.9 4.9 4.8 4.5 3.8 2.2 0.7 -3.6 -8.9-13.8 -19-20.2-15.9 -5 4.9 14.8 17.3 18.8 17.8 16.8 14.5 13.1 11.1 10.3 8.9 7.9 7 6.2 5.2

4.6 4.9 5 5.2 5.2 4.8 4.1 2.8 0.4 -2.8 -7.3 -12-16.2-16.4-10.8 0.8 11.4 19.6 21 22.4 20.3 18.9 16.4 14.2 12 11 9.6 8.4 7.4 6.6 5.5

4.8 5 5.3 5.5 5.3 5 4.3 3.2 0.9 -1.9 -5.6 -9.6-12.1 -9.1 -3.1 8.7 16.6 23.8 24 24.1 22.3 19.9 17.5 15.2 13 11.5 10.1 8.9 7.9 6.7 5.6

4.9 5.2 5.3 5.5 5.3 5 4.3 3.2 1.1 -1.6 -4.9 -7.6 -8.6 -4.2 2.4 -13 20.5 24.8 26 25 23.1 20.5 18.2 15.8 13.4 12 10.6 9.1 8.2 7.2 5.9

4.9 5.2 5.3 5.5 5.2 4.6 4.1 2.6 0.4 -2.8 -6.3 -9.1 -9.6 -6.6 0.4 -10 17.8 21.2 23.8 23.7 22.4 20.2 18.2 15.9 13.5 12.3 10.8 9.4 8.3 7.2 6.2

4.9 5.2 5.3 5.3 4.8 4.2 3.3 1.2 -1.5 -6.6 -9.8-16.5-17.5-15.9-13.8 -3.5 0.5 13.4 18.2 19.6 20.3 19 17.8 15.8 13.8 12.4 11 9.6 8.4 7.3 6.2

4.9 5 5 4.9 4.2 3.3 2.1 -0.7 -4.5-10.7-15.8-26.1-30.5 -34-30.9-26.8 -10 -0.7 10 15.5 17.5 17.1 16.8 15.2 13.7 12.4 11 9.6 8.4 7.4 6.3

4.8 4.9 4.8 4.3 3.5 2.2 0.7 -2.9 -8-15.6-23.8-34.2 -36 -36 -36 -36-30.4-13.9 0.5 9.1 14.1 15.2 15.5 14.4 13.4 12 10.7 8.4 9.4 7.4 6.3

4.6 4.6 4.3 3.9 2.6 0.5 -1.1 -5.2-12.8 -21-30.9 -36 -36 -36 -36 -36 -36-24.8 -7.7 4.2 10 12.8 13.9 13.5 12.8 11.7 10.6 9.3 8.4 7.3 6.2

4.3 4.3 4.1 3.3 1.6 -0.7 -3.1 -7.7-15.8-26.3 -36 -36 -36 -36 -36 -36 -36-31.8 -14 0.5 7.2 10.8 12.8 12.7 12.1 11.3 10.1 9 8.2 7.2 6.2

4.2 4.1 3.6 2.5 0.7 -2 -5 -10-19.7-30.6 -36 -36 -36 -36 -36 -36 -36-35.7-18.3 -2.2 5.2 9.4 11.5 11.8 11.4 10.7 9.8 8.9 8 7 6.2

3.9 3.8 3.2 2.1 -1.4 -3.3 -7-12.5-23.3-34.2 -36 -36 -36 -36 -36 -36 -36 -36-20.2 -4.2 3.5 8 10.3 11 10.7 10.1 9.4 8.4 7.7 6.9 6

3.8 3.5 2.9 1.8-1.7-3.8-8.3-14.2-26.1-35.7 -36 -36 -36 -36 -36 -36 -36 -36-23.1 -6 1.8 6.7 9.4 10 10.1 9.6 8.9 8 7.4 6.6 5.9

3.5 3.2 2.5 1.2 -1.4 -4.6 -9.1-15.5-28.1 -36 -36 -36 -36 -36 -36 -36 -36 -36 -25 -7.6 0.4 5.3 8.3 9.1 9.4 9 8.6 7.7 7.2 6.9 5.6

3.3 3.1 2.2 1.9-1.6 -5 -9.6-15.8-28.4 -36 -36 -36 -36 -36 -36 -36 -36 -36-27.1 -9.7-1.2 3.9 7.2 8.2 8.7 8.3 7.9 7.2 6.7 6.2 5.5

3.3 2.8 2.1 1.8 -1.8 -4.9 -9.8-15.8-28.4 -36 -36 -36 -36 -36 -36 -36 -36 -36-26.3-10.3 -2.4 3.2 6.2 7.2 7.9 7.6 7.4 6.7 6.5 5.7 5.3

3.1 2.6 1.6 1.7-1.9-4.8-9.4-14.8-26.8-35.4 -36 -36 -36 -36 -36 -36 -36 -36-24.6-9.8-2.6 2.4 5.3 6.5 7.2 7 6.9 6.5 6 5.5 5

2.9 2.5 1.6 1.7 -1.6 -4.3 -8.7-12.8 -23-31.5 -36 -36 -36 -36 -36 -36 -36-32.9-21.2 -8.9 -2.6 2.1 4.6 6 6.5 6.6 6.2 6 5.6 5.2 4.8

2.9 2.5 1.8 1.8-1.1 -3.3-6.9-10.6-18.9-26.5-25.2 -36 -36 -36 -36 -36 -36-26.4-17.2-7.2-2.1 2.1 4.2 5.3 5.9 6 5.9 5.6 5.3 4.9 4.5

2.8 2.5 1.9 1.1 -0.7-2.4-5.3-7.9-14.4-19.5-28.1-31.3 -36 -36 -36-34.3-28.5-18.9-12.3-5.6-1.2 2.1 3.8 4.9 5.5 5.5 5.5 5.3 5 4.6 4.3

2.8 2.5 2.1 1.4-0.4-1.2-3.3-5.5-9.6-13.5 -19 -21-29.2-31.5-28.4-24.6-19.2 -13-8.3-3.9-0.7 2.1 3.5 4.5 4.9 5.2 5 4.9 4.6 4.3 4.1

2.8 2.5 2.1 1.6 0.7-0.5-1.8-3.2 -6-8.7-11.8-12.8-16.9-18.2-17.5-13.5-11.1 -8.4 -5-1.6 0.5 2.4 3.5 4.2 4.6 4.6 4.6 4.5 4.3 4.1 3.9

Test Set: 105mm Artillery

108

3.1 3.2 3.8 3.9 4.3 4.5 5.3 5.5 6.3 6.5 7.3 7.4 7.9 7.9 7.9 8 7.9 7.4 7.4 6.6 6.7 5.7 5.7 4.9 4.6 4.1 3.8 3.3 3.3 2.9 2.8

3.2 3.5 4.1 4.3 4.8 5 5.9 6.3 7.2 7.7 8.7 8.7 9.7 9.6 9.6 9.6 9.1 8.7 8.9 7.9 7.7 6.7 6.6 5.6 5.2 4.5 4.2 3.8 3.5 3.2 2.9

3.3 3.6 4.3 4.9 5.3 5.7 6.6 7.2 8.2 8.9 10.3 10.4 11.1 11.3 10.9 11.4 10.6 10.7 10.1 9.3 8.7 7.9 7.4 6.6 5.6 5.2 4.6 4.2 3.8 3.5 3.2

3.6 3.9 4.6 5.3 5.7 6.6 7.3 8.4 9.1 10.7 11.5 12.4 13.2 13.5 13.9 13.7 13.2 12.8 11.7 11.3 10.4 9.1 8.4 7.4 6.5 5.6 5 4.5 4.2 3.8 3.3

3.9 4.2 5 5.6 6.2 7.4 8.4 9.4 10.4 12.1 13.7 14.9 16 16.8 17.3 16.6 16.8 15.6 13.9 13.4 12.1 10.6 9.6 8 7.2 6.3 5.5 4.9 4.5 3.9 3.5

4.1 4.5 5.3 6 6.6 8 9.4 10.7 11.7 13.9 15.8 18.1 19.2 21.3 20.9 21.2 20.2 18.6 17.3 15.4 14.1 12.1 10.8 9.1 7.9 6.7 6 5.3 4.8 4.2 3.8

4.2 4.6 5.6 6.6 7 8.9 10.3 11.8 13.9 15.9 17.3 21.6 23.6 26.3 26 25.8 25.5 22 20.7 17.9 16.1 13.8 12.1 10.1 8.7 7.4 6.6 5.7 5.2 4.5 3.9

4.3 4.9 5.7 6.7 7.4 9.1 10.7 12.5 14.9 18.1 21.9 25.7 27.8 31.1 31.1 31.9 30.4 26.8 24 21 18.2 15.4 13.4 11 9 8 7 6.2 5.5 4.8 4.1

4.3 4.9 5.9 6.9 7.6 9.6 11 13.5 16.4 20.2 24.6 30.8 33.9 36 36 36 33.6 31.3 27.2 24.3 20.5 16.9 14.5 12 10.1 8.7 7.3 6.5 5.6 4.9 4.2

4.5 4.9 5.7 6.9 7.6 9.6 11 13.5 16.5 20.9 26 32.5 36 36 36 36 36 33.9 29.2 26.1 21.9 18.2 15.4 12.7 10.7 8.9 7.6 6.7 5.9 5 4.3

4.3 4.9 5.6 6.7 7.4 9.1 10.4 12.5 15.5 19.7 24.8 30.5 36 36 36 36 36 34.5 31.3 26.8 22.9 18.9 15.9 13.1 11 9 7.9 6.9 6 5.2 4.5

4.3 4.6 5.3 6.3 6.9 8 9.4 10.8 13.5 15.6 20.7 24.6 34.2 33.7 36 35.9 25.3 31.6 30.5 24.4 22 17.6 15.8 13 11 9.1 7.9 6.9 6 5.3 4.5

4.1 4.5 4.9 5.7 6.2 6.9 7.6 8.4 8.9 8.6 10.7 6.7 11.8 18.9 21.4 21.3 23.1 22 24.7 21.2 19.7 15.2 14.5 12.4 10.7 8.9 7.7 6.7 6 5.2 4.5

3.8 4.1 4.3 4.9 5.2 5 5.5 4.5 3.6 0.5 -0.5 -5.3 -7.9 -7.7-14.5 -7.2 3.6 7.6 14.8 13.8 15.2 13.8 13 10.8 10 8.3 7.3 6.5 5.7 5 4.5

3.5 3.8 3.9 4.2 4.2 3.2 2.9 0.9 -2.1 -6.2 -14 -24 -36 -36 -36-34.5-23.4 -8.6 1.2 5.7 10.4 10.6 10.3 9.7 9 7.7 6.9 6.2 5.6 4.9 4.3

3.3 3.3 3.1 3.3 3.1 1.5 0.4-2.9 -9-15.1-26.4 -36 -36 -36 -36 -36 -36-27.2-11.8-3.5 3.9 5.9 7.3 7.6 7.7 6.7 6.3 5.7 5.2 4.6 4.2

2.8 3.1 2.5 2.5 2.1 -0.8 -1.8 -7-17.1-24.3 -36 -36 -36 -36 -36 -36 -36 -36-24.8-13.5 -3.1 1.6 4.3 5.5 6.2 5.7 5.6 5.2 4.9 4.5 3.9

2.6 2.6 2.1 1.8 1.1 -2.2 -4.2 -9.4 -19-29.2 -36 -36 -36 -36 -36 -36 -36 -36-33.9-19.7 -8.9 -2.4 1.5 3.3 4.9 4.6 4.9 4.6 4.5 4.2 3.8

2.4 2.2 1.8 1.1 0.4-3.8-5.3-11.3-21.3-32.2 -36 -36 -36 -36 -36 -36 -36 -36 -36-27.7-13.8-6.5-0.7 1.4 3.2 3.8 4.2 4.1 4.1 3.8 3.6

2.2 1.9 1.2 0.7 -0.7 -4.5 -7.6-12.8 -23-33.5 -36 -36 -36 -36 -36 -36 -36 -36 -36-31.6 -17 -9 -3.8 -0.5 1.8 2.6 3.3 3.3 3.8 3.3 3.3

2.1 1.6 0.9 0.4 -0.9 -4.9 -8 -13-23.6-33.3 -36 -36 -36 -36 -36 -36 -36 -36 -36-32.9-18.3 -11 -4.3 -1.8 0.8 1.9 3.1 2.9 3.2 3.2 3.2

1.8 1.5 0.8 -0.5 -0.9 -4.9 -8-12.5-22.3-31.2 -36 -36 -36 -36 -36 -36 -36 -36 -36-31.8-17.9-11.3 -5.7 -2.4 0.4 1.2 2.2 2.6 2.9 2.8 2.9

1.6 1.4 0.8 -0.5 -0.9 -4.6 -7.7 -11 -19-26.7 -36 -36 -36 -36 -36 -36 -36 -36 -36-28.2-16.9-10.4 -6 -2.5 -0.5 0.9 1.9 2.4 2.6 2.6 2.8

1.6 1.2 0.8 0.4 -0.7 -3.8 -6.6 -8.7-15.8-21.9-30.6-33.9 -36 -36 -36 -36 -36 -36-32.8 -23-15.4 -9.1 -5.5 -2.4 -0.5 0.8 1.6 2.1 2.4 2.4 2.6

1.6 1.4 0.7 0.4-0.5-3.2 -5-7.3-11.5-17.1-22.7-26.3-33.9 -36 -36 -36 -36-28.7-25.3-17.5-11.8-6.7-4.2-1.9-0.5 0.8 1.6 1.9 2.2 2.2 2.5

1.6 1.4 0.8 0.7-0.5-2.4-3.8-5.6-9.1-12.1-17.1-19.2-24.7-28.1-29.2-27.7-27.1-21.4-17.3-12.5-8.7-5.5-3.2-1.5-0.4 0.9 1.6 1.8 2.1 2.2 2.4

1.6 1.5 0.9 0.9-0.4-1.6-2.6-3.8-6.5-8.4-11.5-12.1-16.8-18.2 -19-16.8-17.3-14.7-12.3-9.1-6.2-3.8-2.2-0.8 0.4 0.9 1.6 1.8 2.1 2.1 2.2

1.6 1.6 1.1 1.1 0.4 -0.7 -1.6 -2.2 -4.2 -5.5 -7.7 -7.6 -11-12.4-12.8-12.3 -11 -9.8 -8.4 -6.5 -3.9 -2.6 -1.2 -0.5 0.5 1.1 1.6 1.6 2 2.1 2.1

1.8 1.6 1.2 1.5 0.5 -0.5 -0.7 -0.8 -2.4 -3.2 -4.8 -4.5 -6.7 -7.9 -8.2 -7.4 -6.5 -5.9 -4.9 -3.9 -2.2 -1.4 -0.7 0.4 0.8 1.2 1.6 1.6 1.9 1.9 2.1

1.8 1.6 1.4 1.6 0.9 0.5 -0.5 -0.5 -1.4 -1.5 -2.9 -2.4 -4.2 -4.5 -5.5 -4.3 -3.8 -3.5 -3.2 -1.9 -1.1 -0.5 0.4 0.7 1.1 1.4 1.6 1.8 1.9 1.9 2.1

1.8 1.8 1.5 1.8 1.2 1.1 0.4 0.4 -0.5 -0.7 -1.5 -0.7 -2.2 -2.6 -2.6 -2.6 -2.2 -1.9 -1.4 -1.1 -0.5 0.4 0.5 0.9 1.4 1.5 1.8 1.8 1.9 1.9 2.1

1.8 1.8 1.6 2.1 1.4 1.2 0.9 1 0.4 0.4 0.5 0.4 -0.9 -1.4 -1.5 -1.4 -0.9 -0.8 -0.5 -0.5 0.4 0.5 0.9 1.1 1.5 1.6 1.8 1.8 1.9 1.9 1.9

1.8 1.9 1.6 2.1 1.5 1.5 1.1 1.5 0.7 0.8 0.4 0.8 -0.5 -0.7 -0.7 -0.7 -0.5 -0.5 -0.4 0.4 0.8 0.9 1.2 1.4 1.6 1.6 1.8 1.8 1.9 1.9 1.9

1.9 1.9 1.6 2.2 1.6 1.6 1.4 1.6 1.1 1.1 0.8 1.2 0.4 0.4 0.4 0.4 0.4 0.5 0.8 0.8 1.1 1.2 1.5 1.5 1.6 1.6 1.9 1.8 1.9 1.8 1.9

1.8 1.9 1.6 2.2 1.6 1.9 1.5 1.9 1.4 1.5 1.1 1.8 0.8 0.5 0.5 0.5 0.8 0.9 1.1 1.1 1.4 1.5 1.6 1.6 1.8 1.6 1.9 1.8 1.9 1.8 1.8

Test Set: 105mm HEAT

109

110

APPENDIX G: SOURCE CODE (C++ NETWORK)

Copyright © 1997 Jeff May

#include <iostream.h>

#include <fstream.h>

#include <iomanip.h>

#include <time.h>

#include <math.h>

#include <stdlib.h>

const float STEP = .1;

const int INPUTSIZE = 1085;

const int OUTPUTSIZE = 5;

const int ROW = 35;

const int COLUMN = 31;

void displaylnput (float[]);

void display(fioatQ);

void makeRandomWeights(float[] [INPUTSIZE]);

void display (float[][TNPUTSIZE]);

void mySummation(float[][INPUTSIZE], floatQ, float[]);

float sigmoid(float);

111

void buildlnput(ifstream, float[]);

void feedForward(float[], float[][INPUTSIZE], floatQ, float[][INPUTSIZE], float[]);

float computeError(float[], floatQ, float[]);

void calcHiddenError(float[], float[][INPUTSIZE], float[], float[]);

void changeWeights(float[], floatQ, float[][INPUTSIZE], const int size);

mainO

{

float weightLayerl[INPUTSIZE][INPUTSIZE] = {{0}, {0}};

float inputLayer2[INPUTSIZE] = {0};

float weightLayer2[OUTPUTSIZE][INPUTSIZE] = {{0},{0}};

float outputLayer[OUTPUTSIZE] = {0};

float t60mm[INPUTSIZE] = {0};

float t81mm[INPUTSIZE] = {0};

float tarty[INPUTSIZE] = {0};

float theat[INPUTSIZE] = {0};

float t3_5in[INPUTSIZE] = {0};

float *ammo[OUTPUTSIZE] = {t60mm, t81mm, tarty, theat, t3_5in};

float output60[OUTPUTSIZE] = {1,0,0,0,0};

float output81[OUTPUTSIZE] = {0,1,0,0,0};

float outputarty[OUTPUTSIZE] = {0,0,1,0,0};

float outputheat[OUTPUTSIZE] = {0,0,0,1,0};

112

float output3_5in[OUTPUTSIZE] = {0,0,0,0,1};

float *expected[OUTPUTSIZE] = {output60, output81, outputarty, outputheat, output3_5in};

ifstream mortarl ("60mm.dat", ios::in);

ifstream mortar2("81mm.dat", ios::in);

ifstream arty("arty.dat", ios::in);

ifstream heat("heat.dat", ios::in);

ifstream rocket("3-5in.dat", ios::in);

ofstream layerlweights("data/weightl.dat", ios::out);

ofstream Iayer2weights("data/weight2.dat", ios::out);

ofstream errorData("data/error.dat", ios::out);

float errorl = 0;

float totalError = 0;

const float ACCEPTABLE_ERROR = 1.0;

float outputError[OUTPUTSIZE] = {0};

float hiddenError[INPUTSIZE] = {0};

int counter = 0;

ifstream *infiles[OUTPUTSIZE] = {mortarl, mortar2, arty, heat, rocket};

for(int m = 0; m < OUTPUTSIZE; m++) {

buildlnput(infiles[m] ,ammo[m]);

}

113

makeRandomWeights(weightLayer 1);

makeRandomWeights(weightLayer2);

do{

counter = counter + 1;

cout« "counter " « counter « endl;

totalError = 0;

for(int e = 0; e < OUTPUTSIZE; e++) {

feedForward(ammo[e], weightLayerl, inputLayer2, weightLayer2, outputLayer);

errorl = computeError(outputLayer, expected[e], outputError);

calcHiddenError(outputError, weightLayer2, inputLayer2, hiddenError);

changeWeights(outputError, inputLayer2, weightLayer2, OUTPUTSIZE);

changeWeights(hiddenError, inputLayer2, weightLayerl, INPUTSIZE);

totalError = errorl + totalError;

}

cout «"totalError" «totalError « endl;

errorData «totalError « endl;

} while(totalError > ACCEPTABLE_ERROR);

errorData.close();

for(int r = 0; r < INPUTSIZE; r++) {

for(int c = 0; c < INPUTSIZE; c++) {

layerlweights « weightLayerl[r][c] « "";

114

}

layer 1 weights « endl;

}

layer lweights.close();

for(int rr = 0; rr < OUTPUTSIZE; rr++) {

for(int cc = 0; cc < INPUTSIZE; cc++) {

layer2weights « weightLayer2[rr][cc] «"";

}

layer2weights « endl;

}

layer2weights.close();

return(O);

}

void feedForward(float inputl[], float weight 1[][INPUTSIZE], float input2[], float

weight2[][INPUTSIZE],float output[])

{

float tempSum = 0;

mySummation(weightl, inputl, input2);

115

for(int j = 0; j < INPUTSIZE; j ++){

tempSum = input2 ö];

input2[j] = sigmoid(tempSum);

}

mySummation(weight2, input2, output);

tempSum = 0;

for(int 1 = 0; 1 < INPUTSIZE; 1 ++){

tempSum = outputfl];

output[l] = sigmoid(tempSum);

}

cout «"outputLayer" « endl;

display (output);

}

float sigmoid(float sum){

float answer = 0;

answer = (1 / (1 + (exp (-sum))));

return(answer);

}

116

void makeRandomWeights(float Array[] [INPUTSIZE])

{

srand(time(NULL));

for(int r = 0; r < INPUTSIZE; r++){

for(int c = 0; c < INPUTSIZE; c++){

Array[r][c] = (1.0 *((rand() % 3) -1));

}

}

void mySummation(float weight[][INPUTSIZE], float input[], float output[])

{

float temp[INPUTSIZE][INPUTSIZE];

int sum = 0;

for(int r = 0; r < INPUTSIZE; r++){

for(int c = 0; c < INPUTSIZE; c++){

temp[r][c] = weight[r][c] * input[c];

}

}

117

for(int i = 0; i < INPUTSIZE; i++){

for(int j = 0; j < INPUTSIZE; j++){

sum = temp[i]D] + svun;

}

output[i] = sum;

sum = 0;

}

}

void display(float Array [] [INPUTSIZE])

{

for(int r = 0; r < INPUTSIZE; r++){

for(int c = 0; c < INPUTSIZE; c++){

cout« setw(3) « Array[r][c];

}

cout« endl;

}

cout« endl;

}

118

void display(float Array[])

{

for(int i = 0; i < OUTPUTSIZE; i++){

cout« Array [i] « "";

}

cout« endl;

}

void displayInput(float ArrayQ)

{

int column = 0;

int end = 0;

for (int r = 0; r < ROW; r++){

end = column + COLUMN;

for (; column < end; column++){

cout« Array [column] «"";

}

cout« endl;

}

cout« endl;

119

void buildlnput(ifstream infile, float ammoArrayQ)

{

infile.open();

cout«"in build input" « endl;

for(int i = 0; i < INPUTSIZE; i++) {

infile » ammo Array [i];

}

infile.close();

}

float computeError(float actual[], float expected[], float errorQ)

{

float result = 0;

float temp = 0;

for(int i = 0; i < OUTPUTSIZE; i++) {

error[i] = expected[i] - actualfi];

if(error[i] < 0) {

temp = error[i] * -1.0;

}

120

else {

temp = error [i];

}

result = temp + result;

}

return(result);

}

void calcHiddenError(float outError[], float weight2[][INPUTSIZE], float input2[], float

hidden[])

{

for(int c = 0; c < INPUTSIZE; c++) {

for(int r = 0; r < OUTPUTSIZE; r++) {

hidden[c] = (outError[r] * weight2[r][c]) + hidden[c];

}

}

for(int i = 0; i < INPUTSIZE; i++) {

hidden[i] = hidden[i] * (input2[i] * (1 - input2[i]));

}

}

121

void changeWeights(float error[], float input[], float weight[][INPUTSIZE], const int ROW)

{

float temp = 0;

//cout«"in changweights" « endl;

for(intr = 0;r<ROW;r++){

for(int c = 0; c < INPUTSIZE; c++) {

temp = STEP * error[r] * input[c];

weight[r][c] = weight[r][c] + temp;

}

}

}

122

LIST OF REFERENCES

1. Young, R. Helms, L., "Applied Geophysics and the Detection of Buried
Munitions", August 96.

2. Reference Manual, GA-72Cd Magnetic Locator, Schonstedt Instrument Company.

3. Foley, J., Gifford, M., "Ordnance and Explosives (OE) Program Geographic
Information System (GIS) and Knowledge Base (KB)", Sanford Cohen and
Associates Inc.

4. Jain, A., Mao, J., Mohiuddin, K., "Artificial Neural Networks: A Tutorial,"
Computer, Vol. 29, No. 3, March 1996, pp. 31-44.

5. Cantrell, M., Speech Recognition Using Artificial Neural Networks, Master's
Thesis, Naval Postgraduate School, Monterey, California, March 1996.

6. Koiran, P., "On the Complexity of Approximating Mappings Using Feedforward
Networks", Neural Networks, 1993, Vol. 6, pp.649-653.

7. Haykin, S., Neural Networks: A Comprehensive Foundation, Macmillan College
Publishing Company, New York, 1994.

8. Lippmann, R., "An Introduction to Computing with Neural Nets", IEEE ASSP
Magazine, April 1987, pp. 4-22.

9. Hudson, P., Postma, E., "Choosing and Using a Neural Net", Artificial Neural
Networks, Springer-Verlag, Heidelberg, Germany, 1995.

10. Dean, T., Allen, J., Aloimonos, Y., Artificial Intelligence Theory and Practice,
Benjamin/Cummings, Redwood City, California, 1995.

11. Caudill, M., Butler, C, Understanding Neural Networks, MIT Press, Vol. 1, Fifth
Printing, 1994.

12. Graham, P., "ANSI Common Lisp," Prentice Hall, Englewood Cliffs, New Jersey,
1996.

123

124

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center.
8725 John J. Kingman Road, Ste 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library
Naval Postgraduate School
411 Dyer Rd.
Monterey, CA 93943-5101

Chairman, Code CS
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Dr. Nelson D. Ludlow, Code CS/Lw,
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

5. Dr. Robert B. McGhee, Code CS/Mz
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Dr. Yukata Kanayama, Code CS/Kz.
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

125

CPT Jeffrey A. May
Defense Intelligence Agency
ATTN: DIAC Collateral Distribution Center
Washington, D.C. 20340
Inbound-15 July 97

8. ECJ6-NP
HQ USEUCOM
Unit 30400 Box 1000
APO AE 09128

126

